This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182469 #40 May 02 2025 03:31:13 %S A182469 1,1,1,3,1,1,5,1,3,1,7,1,1,3,9,1,5,1,11,1,3,1,13,1,7,1,3,5,15,1,1,17, %T A182469 1,3,9,1,19,1,5,1,3,7,21,1,11,1,23,1,3,1,5,25,1,13,1,3,9,27,1,7,1,29, %U A182469 1,3,5,15,1,31,1,1,3,11,33,1,17,1,5,7,35,1 %N A182469 Triangle read by rows in which row n lists the odd divisors of n. %C A182469 n-th row = intersection of A005408 and of n-th row of A027750. %H A182469 Reinhard Zumkeller, <a href="/A182469/b182469.txt">Rows n = 1..2500 of triangle, flattened</a> %F A182469 T(n,k) = A027750(A000265(n),k), 1 <= k <= A001227(n). %F A182469 A000265(n) = T(n,A001227(n)). %e A182469 The triangle begins: %e A182469 . 1 {1} %e A182469 . 2 {1} %e A182469 . 3 {1,3} %e A182469 . 4 {1} %e A182469 . 5 {1,5} %e A182469 . 6 {1,3} %e A182469 . 7 {1,7} %e A182469 . 8 {1} %e A182469 . 9 {1,3,9} %e A182469 . 10 {1,5} %e A182469 . 11 {1,11} %e A182469 . 12 {1,3} %e A182469 . 13 {1,13} %e A182469 . 14 {1,7} %e A182469 . 15 {1,3,5,15} %e A182469 . 16 {1} . %t A182469 Flatten[Table[Select[Divisors[n],OddQ],{n,40}]] (* _Harvey P. Dale_, Aug 13 2012 *) %t A182469 Flatten[Table[Divisors[n / 2^IntegerExponent[n, 2]], {n, 40}]] (* _Amiram Eldar_, May 02 2025 *) %o A182469 (Haskell) %o A182469 a182469 n k = a182469_tabf !! (n-1) !! (k-1) %o A182469 a182469_row = a027750_row . a000265 %o A182469 a182469_tabf = map a182469_row [1..] %o A182469 (PARI) tabf(nn) = {for (n=1, nn, fordiv(n, d, if (d%2, print1(d, ", "))); print(););} \\ _Michel Marcus_, Apr 22 2017 %o A182469 (PARI) row(n) = divisors(n >> valuation(n, 2)); \\ _Amiram Eldar_, May 02 2025 %o A182469 (Python) %o A182469 from sympy import divisors %o A182469 def row(n): %o A182469 return [d for d in divisors(n) if d % 2] %o A182469 for n in range(1, 21): print(row(n)) # _Indranil Ghosh_, Apr 22 2017 %Y A182469 Cf. A001227 (row lengths), A000593 (row sums), A136655 (row products). %Y A182469 Cf. A000265, A005408, A027750, A050999, A051000, A037283, A037284, A037285, A171565. %Y A182469 Cf. also A237048. %K A182469 nonn,tabf %O A182469 1,4 %A A182469 _Reinhard Zumkeller_, Apr 30 2012