cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182489 G.f.: Sum_{n>=0} x^n / Product_{k=1..n} (1 - k*2^k*x).

This page as a plain text file.
%I A182489 #10 May 02 2012 18:03:42
%S A182489 1,1,3,15,127,1695,35199,1114303,53230271,3806172863,404501151935,
%T A182489 63629782432959,14743655706528959,5018867716910902463,
%U A182489 2501521070328547822783,1821950518454974100737215,1934522846425767844573547711,2989550430024658138034762353855
%N A182489 G.f.: Sum_{n>=0} x^n / Product_{k=1..n} (1 - k*2^k*x).
%e A182489 G.f.: A(x) = 1 + x + 3*x^2 + 15*x^3 + 127*x^4 + 1695*x^5 + 35199*x^6 +...
%e A182489 such that
%e A182489 A(x) = 1 + x/(1-2*x) + x^2/((1-2*x)*(1-2*2^2*x)) + x^3/((1-2*x)*(1-2*2^2*x)*(1-3*2^3*x)) +...
%o A182489 (PARI) {a(n)=polcoeff(sum(m=0,n,x^m/prod(k=0,m,1-k*2^k*x+x*O(x^n))),n)}
%o A182489 for(n=0,20,print1(a(n),", "))
%K A182489 nonn
%O A182489 0,3
%A A182489 _Paul D. Hanna_, May 02 2012