A182509 a(0)=0, a(1)=1, a(n)=(a(n-1) XOR n) + a(n-2).
0, 1, 3, 1, 8, 14, 16, 37, 61, 89, 144, 244, 392, 633, 1023, 1641, 2680, 4306, 6968, 11261, 18209, 29489, 47688, 77200, 124880, 202073, 326931, 528993, 855952, 1384942, 2240896, 3625869, 5866797, 9492633, 15359464, 24852068, 40211496, 65063537, 105275007
Offset: 0
Programs
-
Python
prpr = 0 prev = 1 for n in range(2,99): current = (prev ^ n) + prpr print(prpr, end=', ') prpr = prev prev = current
Formula
a(0)=0, a(1)=1, a(n)=(a(n-1) XOR n) + a(n-2), where XOR is the bitwise exclusive-or operator.
Comments