This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182518 #12 Feb 16 2025 08:33:13 %S A182518 63973,31146661,703995733,21595159873,192739365541,461574735553, %T A182518 3976486324993,10028704049893,84154807001953,197531244744661, %U A182518 741700610203861,973694665856161,2001111155103061,3060522900274753,3183276534603733,4271903575869601 %N A182518 Carmichael numbers of the form C = p*(2p-1)*(3p-2)*(6p-5), where p is prime. %C A182518 We get Carmichael numbers with four prime divisors for p = 7, 271, 337, 727, 1237, 1531, 2281, 3037, 3067. %C A182518 We get Carmichael numbers with more than four prime divisors for p = 31, 67, 157, 577, 2131, 2731, 3301. %C A182518 Note: we can see that p, 2p-1, 3p-2 and 6p-5 can all four be primes only for p = 6k+1 (for p = 6k+5, we get 2p-1 divisible by 3), so in that case the formula is equivalent to C = (6k+1)(12k+1)(18k+1)(36k+1). %H A182518 Charles R Greathouse IV, <a href="/A182518/b182518.txt">Table of n, a(n) for n = 1..10000</a> %H A182518 E. W. Weisstein, <a href="https://mathworld.wolfram.com/CarmichaelNumber.html">Carmichael Number</a> %o A182518 (PARI) search(lim)={ %o A182518 my(v=List(),n,f); %o A182518 forprime(p=7,lim, %o A182518 n=p*(2*p-1)*(3*p-2)*(6*p-5)-1; %o A182518 if(n%(p-1),next); %o A182518 f=factor(2*p-1); %o A182518 for(i=1,#f[,1],if(f[i,2]>1 || n%(f[i,1]-1), next(2))); %o A182518 f=factor(3*p-2); %o A182518 for(i=1,#f[,1],if(f[i,2]>1 || n%(f[i,1]-1), next(2))); %o A182518 f=factor(6*p-5); %o A182518 for(i=1,#f[,1],if(f[i,2]>1 || n%(f[i,1]-1), next(2))); %o A182518 listput(v,n+1) %o A182518 ); %o A182518 Vec(v) %o A182518 }; \\ _Charles R Greathouse IV_, Oct 02 2012 %K A182518 nonn %O A182518 1,1 %A A182518 _Marius Coman_, May 03 2012