A182534 Array read by antidiagonals: coefficient of the Euler-Mascheroni constant in below expression.
1, 1, 2, 2, 2, 3, 5, 4, 2, 6, 14, 10, 3, 4, 10, 42, 28, 6, 6, 5, 20, 132, 84, 14, 12, 6, 10, 35, 429, 264, 36, 28, 10, 12, 14, 70, 1430, 858, 99, 72, 20, 20, 14, 28, 126, 4862, 2860, 286, 198, 45, 40, 20, 28, 42, 252
Offset: 1
Examples
Evaluate: -256/Pi*int(cos(x)^3*log(x)*sin(x)^5/x, x=0..infinity) = 3*eulergamma-log(9/8). Thus the (3,3) entry of the array is 3, the coefficient of the Euler-Mascheroni constant in this expression. The array begins as: | 1 1 2 5 14 42 132 429 ... | | 2 2 4 10 28 84 264 858 ... | | 3 2 3 6 14 36 99 286 ... | | 6 4 6 12 28 72 198 572 ... | | 10 5 6 10 20 45 110 286 ... | | 20 10 12 20 40 90 220 572 ... | | 35 14 14 20 35 70 154 364 ... | | 70 28 28 40 70 140 308 728 ... | | ... ... ... ... ... ... ... ... ... |
Crossrefs
Programs
-
Mathematica
A[a_, b_] := A[a, b] = Array[Coefficient[ Integrate[ Log[x]*Cos[x]^#1*Sin[x]^(2 #2 - 1)/x, {x, 0, Infinity}] (2^(#1 + 2 #2 - 1))/(-\[Pi]), EulerGamma] &, {a, b}]; A[11, 11]; Print[A[11, 11] // MatrixForm]; Table2 = {}; k = 1; While[k < 11, Table1 = {}; i = 1; j = k; While[0 < j, AppendTo[Table1, First[Take[First[Take[A[11, 11], {i, i}]], {j, j}]]]; j = j - 1; i = i + 1]; AppendTo[Table2, Table1]; k++]; Print[Flatten[Table2]]
Comments