A182535 Number of terms in Zeckendorf representation of prime(n).
1, 1, 1, 2, 2, 1, 3, 3, 2, 2, 3, 2, 3, 3, 2, 4, 3, 3, 4, 3, 3, 3, 4, 1, 2, 4, 3, 3, 4, 3, 4, 3, 4, 4, 2, 3, 2, 4, 3, 3, 3, 3, 3, 4, 5, 2, 5, 4, 5, 5, 1, 3, 2, 3, 3, 4, 3, 4, 4, 4, 4, 3, 5, 4, 5, 4, 4, 4, 5, 5, 5, 4, 5, 6, 2, 3, 4, 4, 3, 4, 3, 4, 5, 3, 4, 4, 5, 5, 4, 5, 3, 3, 3, 5, 6, 4, 5, 2, 3, 5, 4, 4, 4, 5, 5
Offset: 1
Keywords
Examples
prime(4)=7, and 7 is represented as 5+2, so a(4)=2. prime(7)=17, and 17 is represented as 13+3+1, so a(7)=3.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[n_Integer] := Block[{k = Ceiling[ Log[ GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; Count[fr, 1]]; f@# & /@ Prime@ Range@ 105 (* Robert G. Wilson v, Apr 22 2015 *)
Comments