This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182579 #21 Jan 05 2025 19:51:39 %S A182579 1,1,2,1,1,2,1,1,3,2,1,1,4,3,2,1,1,5,4,5,2,1,1,6,5,9,5,2,1,1,7,6,14,9, %T A182579 7,2,1,1,8,7,20,14,16,7,2,1,1,9,8,27,20,30,16,9,2,1,1,10,9,35,27,50, %U A182579 30,25,9,2,1,1,11,10,44,35,77,50,55,25,11,2 %N A182579 Triangle read by rows: T(0,0) = 1, for n>0: T(n,n) = 2 and for k<=floor(n/2): T(n,2*k) = n/(n-k) * binomial(n-k,k), T(n,2*k+1) = (n-1)/(n-1-k) * binomial(n-1-k,k). %C A182579 A000204(n+1) = sum of n-th row, Lucas numbers; %C A182579 A000204(n+3) = alternating row sum of n-th row; %C A182579 A182584(n) = T(2*n,n), central terms; %C A182579 A000012(n) = T(n,0), left edge; %C A182579 A040000(n) = T(n,n), right edge; %C A182579 A054977(n-1) = T(n,1) for n > 0; %C A182579 A109613(n-1) = T(n,n-1) for n > 0; %C A182579 A008794(n) = T(n,n-2) for n > 1. %H A182579 Reinhard Zumkeller, <a href="/A182579/b182579.txt">Rows n = 0..150 of triangle, flattened</a> %H A182579 Henry W. Gould, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/3-4/gould.pdf">A Variant of Pascal's Triangle</a>, The Fibonacci Quarterly, Vol. 3, Nr. 4, Dec. 1965, pp. 257-271, with <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/4-1/corrections2.pdf">corrections</a>. %F A182579 T(n+1,2*k+1) = T(n,2*k), T(n+1,2*k) = T(n,2*k-1) + T(n,2*k). %e A182579 Starting with 2nd row = [1 2] the rows of the triangle are defined recursively without computing explicitely binomial coefficients; demonstrated for row 8, (see also Haskell program): %e A182579 (0) 1 1 7 6 14 9 7 2 [A] row 7 prepended by 0 %e A182579 1 1 7 6 14 9 7 2 (0) [B] row 7, 0 appended %e A182579 1 0 1 0 1 0 1 0 1 [C] 1 and 0 alternating %e A182579 1 0 7 0 14 0 7 0 0 [D] = [B] multiplied by [C] %e A182579 1 1 8 7 20 14 16 7 2 [E] = [D] added to [A] = row 8. %e A182579 The triangle begins: | A000204 %e A182579 1 | 1 %e A182579 1 2 | 3 %e A182579 1 1 2 | 4 %e A182579 1 1 3 2 | 7 %e A182579 1 1 4 3 2 | 11 %e A182579 1 1 5 4 5 2 | 18 %e A182579 1 1 6 5 9 5 2 | 29 %e A182579 1 1 7 6 14 9 7 2 | 47 %e A182579 1 1 8 7 20 14 16 7 2 | 76 %e A182579 1 1 9 8 27 20 30 16 9 2 | 123 %e A182579 1 1 10 9 35 27 50 30 25 9 2 | 199 . %t A182579 T[_, 0] = 1; %t A182579 T[n_, n_] /; n > 0 = 2; %t A182579 T[_, 1] = 1; %t A182579 T[n_, k_] := T[n, k] = Which[ %t A182579 OddQ[k], T[n - 1, k - 1], %t A182579 EvenQ[k], T[n - 1, k - 1] + T[n - 1, k]]; %t A182579 Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Dec 01 2021 *) %o A182579 (Haskell) %o A182579 a182579 n k = a182579_tabl !! n !! k %o A182579 a182579_row n = a182579_tabl !! n %o A182579 a182579_tabl = [1] : iterate (\row -> %o A182579 zipWith (+) ([0] ++ row) (zipWith (*) (row ++ [0]) a059841_list)) [1,2] %Y A182579 Cf. A065941, A059841. %K A182579 nonn,tabl %O A182579 0,3 %A A182579 _Reinhard Zumkeller_, May 06 2012