This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182591 #15 Jun 02 2025 03:14:13 %S A182591 0,1,1,2,2,1,1,1,3,2,2,1,2,1,2,2,3,2,2,2,4,2,2,2,2,4,3,3,4,3,2,1,5,2, %T A182591 4,2,4,4,2,3,5,2,3,3,3,4,5,5,4,2,4,3,6,3,2,5,6,2,3,2,5,2,2,4,5,3,3,2, %U A182591 3,1,4,4,5,3,5,4,9,3,3,3,5,4,5,4,3,4 %N A182591 Number of prime factors of form cn+1 for numbers 3^n-1. %H A182591 Seppo Mustonen, <a href="/A182591/b182591.txt">Table of n, a(n) for n = 2..170</a> %H A182591 S. Mustonen, <a href="http://www.survo.fi/papers/MustonenPrimes.pdf">On prime factors of numbers m^n+-1</a> %H A182591 Seppo Mustonen, <a href="/A182590/a182590.pdf">On prime factors of numbers m^n+-1</a> [Local copy] %e A182591 For n=6, 3^n-1=728 has two prime factors of the form cn+1, namely 7=n+1 and 13=2n+1. Thus a(6)=2. %t A182591 m = 3; n = 2; nmax = 170; %t A182591 While[n <= nmax, {l = FactorInteger[m^n - 1]; s = 0; %t A182591 For[i = 1, i <= Length[l], %t A182591 i++, {p = l[[i, 1]]; %t A182591 If[IntegerQ[(p - 1)/n] == True, s = s + l[[i, 2]]];}]; %t A182591 a[n] = s;} n++;]; %t A182591 Table[a[n], {n, 2, nmax}] %K A182591 nonn %O A182591 2,4 %A A182591 _Seppo Mustonen_, Nov 22 2010