This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182598 #12 Jun 02 2025 03:14:45 %S A182598 1,2,1,2,3,2,2,1,2,1,2,3,2,2,3,2,4,2,2,1,3,2,2,2,3,3,4,3,6,1,3,4,2,5, %T A182598 5,3,2,5,4,3,4,1,2,2,4,1,5,3,3,6,3,4,5,4,4,3,2,1,3,2,1,3,3,3,8,4,4,2, %U A182598 4,3,1,5,3,5,4,1,7,5,3,3,3,4,5,3,4,7,2,2,7,5,3,2,4,5,2,3,2,4,6 %N A182598 Number of prime factors of form cn+1 for numbers 6^n+1. %C A182598 Repeated prime factors are counted. %H A182598 S. Mustonen, <a href="http://www.survo.fi/papers/MustonenPrimes.pdf">On prime factors of numbers m^n+-1</a> %H A182598 Seppo Mustonen, <a href="/A182590/a182590.pdf">On prime factors of numbers m^n+-1</a> [Local copy] %e A182598 For n=6, 6^n-1=46655=5*7*31*43 has three prime factors of form, namely 7=n+1, 31=5n+1, 43=7n+1. Thus a(6)=3. %t A182598 m = 6; n = 2; nmax = 100; %t A182598 While[n <= nmax, {l = FactorInteger[m^n + 1]; s = 0; %t A182598 For[i = 1, i <= Length[l], %t A182598 i++, {p = l[[i, 1]]; %t A182598 If[IntegerQ[(p - 1)/n] == True, s = s + l[[i, 2]]];}]; %t A182598 a[n] = s;} n++;]; %t A182598 Table[a[n], {n, 2, nmax}] %t A182598 Table[{p, e}=Transpose[FactorInteger[6^n+1]]; Sum[If[Mod[p[[i]], n] == 1, e[[i]], 0], {i, Length[p]}], {n, 2, 50}] %K A182598 nonn %O A182598 2,2 %A A182598 _Seppo Mustonen_, Nov 24 2010