This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182605 #28 Jun 19 2023 09:05:46 %S A182605 1,10,120,1320,14630,160920,1771440,19485720,214357440,2357931730, %T A182605 25937408640,285311493720,3138428201160,34522710196920, %U A182605 379749831637440,4177248147997440,45949729842155150,505447028263532520,5559917313256631160,61159090445821012920 %N A182605 Number of conjugacy classes in GL(n,11). %H A182605 Alois P. Heinz, <a href="/A182605/b182605.txt">Table of n, a(n) for n = 0..300</a> %F A182605 G.f.: Product_{k>=1} (1-x^k)/(1-11*x^k). - _Alois P. Heinz_, Nov 03 2012 %p A182605 with(numtheory): %p A182605 b:= proc(n) b(n):= add(phi(d)*11^(n/d), d=divisors(n))/n-1 end: %p A182605 a:= proc(n) a(n):= `if`(n=0, 1, %p A182605 add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n) %p A182605 end: %p A182605 seq(a(n), n=0..30); # _Alois P. Heinz_, Nov 03 2012 %t A182605 b[n_] := Sum[EulerPhi[d]*11^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Feb 17 2014, after _Alois P. Heinz_ *) %o A182605 (Magma) N := 300; R<x> := PowerSeriesRing(Integers(), N); %o A182605 Eltseq( &*[ (1-x^k)/(1-11*x^k) : k in [1..N] ] ); // _Volker Gebhardt_, Dec 07 2020 %o A182605 (PARI) %o A182605 N=66; x='x+O('x^N); %o A182605 gf=prod(n=1,N, (1-x^n)/(1-11*x^n) ); %o A182605 v=Vec(gf) %o A182605 /* _Joerg Arndt_, Jan 24 2013 */ %Y A182605 Cf. A006951, A006952, A049314, A049315, A049316, A182603, A182604, A182606, A182607, A182608, A182609, A182610, A182611, A182612. %K A182605 nonn %O A182605 0,2 %A A182605 _Klaus Brockhaus_, Nov 23 2010 %E A182605 More terms from _Alois P. Heinz_, Nov 03 2012