This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182608 #25 Jun 19 2023 08:57:20 %S A182608 1,16,288,4896,83504,1419552,24137280,410333472,6975752256, %T A182608 118587788080,2015993812032,34271894799648,582622235726688, %U A182608 9904578007265568,168377826533765184,2862423051073925184,48661191875230982480,827240261878925204256,14063084452060314850656 %N A182608 Number of conjugacy classes in GL(n,17). %H A182608 Alois P. Heinz, <a href="/A182608/b182608.txt">Table of n, a(n) for n = 0..250</a> %F A182608 G.f.: Product_{k>=1} (1-x^k)/(1-17*x^k). - _Alois P. Heinz_, Nov 03 2012 %p A182608 with(numtheory): %p A182608 b:= proc(n) b(n):= add(phi(d)*17^(n/d), d=divisors(n))/n-1 end: %p A182608 a:= proc(n) a(n):= `if`(n=0, 1, %p A182608 add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n) %p A182608 end: %p A182608 seq(a(n), n=0..30); # _Alois P. Heinz_, Nov 03 2012 %t A182608 b[n_] := Sum[EulerPhi[d]*17^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Feb 17 2014, after _Alois P. Heinz_ *) %o A182608 (Magma) /* The program does not work for n>4: */ [1] cat [NumberOfClasses(GL(n, 17)) : n in [1..4]]; %o A182608 (PARI) %o A182608 N=66; x='x+O('x^N); %o A182608 gf=prod(n=1,N, (1-x^n)/(1-17*x^n) ); %o A182608 v=Vec(gf) %o A182608 /* _Joerg Arndt_, Jan 24 2013 */ %Y A182608 Cf. A006951, A006952, A049314, A049315, A049316, A182603, A182604, A182605, A182606, A182607, A182609, A182610, A182611, A182612. %K A182608 nonn %O A182608 0,2 %A A182608 _Klaus Brockhaus_, Nov 23 2010 %E A182608 More terms from _Alois P. Heinz_, Nov 03 2012 %E A182608 MAGMA code edited by _Vincenzo Librandi_, Jan 24 2013