This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182616 #27 Oct 18 2023 10:07:00 %S A182616 0,1,3,8,17,35,66,120,209,355,585,946,1498,2335,3583,5428,8118,12013, %T A182616 17592,25525,36711,52382,74173,104303,145698,202268,279153,383145, %U A182616 523105,710655,960863,1293314,1733281,2313377,3075425,4073085,5374806,7067863,9263076 %N A182616 Number of partitions of 2n that contain odd parts. %C A182616 Bisection (even part) of A086543. %F A182616 a(n) = A000041(2*n) - A000041(n). %e A182616 For n=3 the partitions of 2n are %e A182616 6 ....................... does not contains odd parts %e A182616 3 + 3 ................... contains odd parts ........... * %e A182616 4 + 2 ................... does not contains odd parts %e A182616 2 + 2 + 2 ............... does not contains odd parts %e A182616 5 + 1 ................... contains odd parts ........... * %e A182616 3 + 2 + 1 ............... contains odd parts ........... * %e A182616 4 + 1 + 1 ............... contains odd parts ........... * %e A182616 2 + 2 + 1 + 1 ........... contains odd parts ........... * %e A182616 3 + 1 + 1 + 1 ........... contains odd parts ........... * %e A182616 2 + 1 + 1 + 1 + 1 ....... contains odd parts ........... * %e A182616 1 + 1 + 1 + 1 + 1 + 1 ... contains odd parts ........... * %e A182616 There are 8 partitions of 2n that contain odd parts. %e A182616 Also p(2n)-p(n) = p(6)-p(3) = 11-3 = 8, where p(n) is the number of partitions of n, so a(3)=8. %e A182616 From _Gus Wiseman_, Oct 18 2023: (Start) %e A182616 For n > 0, also the number of integer partitions of 2n that do not contain n, ranked by A366321. For example, the a(1) = 1 through a(4) = 17 partitions are: %e A182616 (2) (4) (6) (8) %e A182616 (31) (42) (53) %e A182616 (1111) (51) (62) %e A182616 (222) (71) %e A182616 (411) (332) %e A182616 (2211) (521) %e A182616 (21111) (611) %e A182616 (111111) (2222) %e A182616 (3221) %e A182616 (3311) %e A182616 (5111) %e A182616 (22211) %e A182616 (32111) %e A182616 (221111) %e A182616 (311111) %e A182616 (2111111) %e A182616 (11111111) %e A182616 (End) %p A182616 with(combinat): a:= n-> numbpart(2*n) -numbpart(n): seq(a(n), n=0..35); %t A182616 Table[Length[Select[IntegerPartitions[2n],n>0&&FreeQ[#,n]&]],{n,0,15}] (* _Gus Wiseman_, Oct 11 2023 *) %t A182616 Table[Length[Select[IntegerPartitions[2n],Or@@OddQ/@#&]],{n,0,15}] (* _Gus Wiseman_, Oct 11 2023 *) %Y A182616 Cf. A304710. %Y A182616 Bisection of A086543, with ranks A366322. %Y A182616 The case of all odd parts is A035294, bisection of A000009. %Y A182616 The strict case is A365828. %Y A182616 These partitions have ranks A366530. %Y A182616 A000041 counts integer partitions, strict A000009. %Y A182616 A006477 counts partitions with at least one odd and even part, ranks A366532. %Y A182616 A047967 counts partitions with at least one even part, ranks A324929. %Y A182616 A086543 counts partitions of n not containing n/2, ranks A366319. %Y A182616 A366527 counts partitions of 2n with an even part, ranks A366529. %Y A182616 Cf. A001522, A006827, A058695, A078408, A079122, A231429, A365543, A366321. %K A182616 nonn %O A182616 0,3 %A A182616 _Omar E. Pol_, Dec 03 2010 %E A182616 Edited by _Alois P. Heinz_, Dec 03 2010