cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182622 a(n) is the number whose binary representation is the concatenation of the divisors of n written in base 2.

This page as a plain text file.
%I A182622 #26 May 22 2025 10:21:35
%S A182622 1,6,7,52,13,222,15,840,121,858,27,28268,29,894,991,26896,49,113970,
%T A182622 51,215892,2037,3446,55,14471576,441,3514,3899,217052,61,14538238,63,
%U A182622 1721376,7905,13410,7139,926213284,101,13542,8039,221009192
%N A182622 a(n) is the number whose binary representation is the concatenation of the divisors of n written in base 2.
%C A182622 a(n) is A182621(n), interpreted as a binary number, written in base 10. The first repeated element is 991, from 15 and 479.
%C A182622 Except for 1, no power of 2 can occur in this sequence, an obvious consequence of the fact that a(n) has to be the sum of at least two distinct powers of 2 for all n > 1. - _Alonso del Arte_, Nov 13 2013
%H A182622 Indranil Ghosh, <a href="/A182622/b182622.txt">Table of n, a(n) for n = 1..50000</a>
%F A182622 a(p) = 2^(floor(log_2(p)) + 1) + p for p prime. Also, a(p + k) > a(p) for all k > 0. Furthermore, for all primes p > 3, a(p) < a(p - 1).
%F A182622 a(2^(m - 1)) = sum(k = 0 .. m - 1, 2^((m^2 + m)/2 - (k^2 + k)/2 - 1)) = A164894(m). - _Alonso del Arte_, Nov 13 2013
%e A182622 The divisors of 10 are 1, 2, 5, 10. Then 1, 2, 5, 10 written in base 2 are 1, 10, 101, 1010. The concatenation of 1, 10, 101, 1010 is 1101011010. Then a(10) = 858 because the binary number 1101011010 written in base 10 is 858.
%t A182622 concatBits[n_] := FromDigits[Join @@ (IntegerDigits[#, 2]& /@ Divisors[n]), 2]; concatBits /@ Range[40](* _Giovanni Resta_, Nov 23 2010 *)
%o A182622 (Python)
%o A182622 def A182622(n):
%o A182622     s=""
%o A182622     for i in range(1,n+1):
%o A182622         if n%i==0:
%o A182622             s+=bin(i)[2:]
%o A182622     return int(s,2) # _Indranil Ghosh_, Jan 28 2017
%o A182622 (PARI) a(n) = {my(cbd = []); fordiv(n, d, cbd = concat(cbd, binary(d));); fromdigits(cbd, 2);} \\ _Michel Marcus_, Jan 28 2017
%Y A182622 Cf. A027750, A007088, A182620, A182621, A182623, A182624, A182627, A182632.
%K A182622 nonn,base,easy
%O A182622 1,2
%A A182622 _Omar E. Pol_, Nov 22 2010
%E A182622 More terms from _Giovanni Resta_, Nov 23 2010