cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182627 Total number of digits in binary expansion of all divisors of n.

This page as a plain text file.
%I A182627 #50 Aug 15 2025 02:27:10
%S A182627 1,3,3,6,4,8,4,10,7,10,5,15,5,10,10,15,6,17,6,18,11,12,6,24,9,12,12,
%T A182627 18,6,24,6,21,13,14,13,30,7,14,13,28,7,26,7,21,20,14,7,35,10,21,14,21,
%U A182627 7,28,14,28,14,14,7,42,7,14,21,28,15,30,8,24,15,30,8
%N A182627 Total number of digits in binary expansion of all divisors of n.
%C A182627 Also, total number of digits in row n of triangle A182620.
%C A182627 Also, number of digits of A182621(n).
%C A182627 Rows sums of triangle A182628.
%C A182627 From _Davide Rotondo_, Apr 20 2022: (Start)
%C A182627 Can be constructed by writing the sequence of natural numbers with 1 one, 2 twos, 4 threes, 8 fours, ..., where 1,2,4,8,... are consecutive powers of 2; then the same sequence spaced by a zero, then the same sequence spaced by two zeros, and so on. Finally add the values of the columns.
%C A182627      1  2  2  3  3  3  3  4  4  4  4  4  4  4  4  5 ...
%C A182627      0  1  0  2  0  2  0  3  0  3  0  3  0  3  0  4 ...
%C A182627      0  0  1  0  0  2  0  0  2  0  0  3  0  0  3  0 ...
%C A182627      0  0  0  1  0  0  0  2  0  0  0  2  0  0  0  3 ...
%C A182627      0  0  0  0  1  0  0  0  0  2  0  0  0  0  2  0 ...
%C A182627      0  0  0  0  0  1  0  0  0  0  0  2  0  0  0  0 ...
%C A182627      0  0  0  0  0  0  1  0  0  0  0  0  0  2  0  0 ...
%C A182627      0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  2 ...
%C A182627      0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0 ...
%C A182627      0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0 ...
%C A182627      0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0 ...
%C A182627      0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0 ...
%C A182627      0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0 ...
%C A182627      0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0 ...
%C A182627      0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0 ...
%C A182627      0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1 ...
%C A182627      ...
%C A182627      ----------------------------------------------
%C A182627 Tot. 1  3  3  6  4  8  4 10  7 10  5 15  5 10 10 15 ...  (End)
%H A182627 Jaroslav Krizek, <a href="/A182627/b182627.txt">Table of n, a(n) for n = 1..500</a>
%F A182627 a(n) = A093653(n) + A226590(n). - _Jaroslav Krizek_, Sep 01 2013
%F A182627 a(n) = tau(n) + Sum_{d|n} floor(log_2(d)). - _Ridouane Oudra_, Dec 11 2020
%F A182627 a(n) = Sum_{i=0..floor(log_2(n))} A135539(n,2^i). - _Ridouane Oudra_, Sep 19 2022
%e A182627 The divisors of 12 are 1, 2, 3, 4, 6, 12. These divisors written in base 2 are 1, 10, 11, 100, 110, 1100. Then a(12)=15 because 1+2+2+3+3+4 = 15.
%t A182627 Table[Total[IntegerLength[Divisors[n],2]],{n,60}] (* _Harvey P. Dale_, Jan 26 2012 *)
%o A182627 (PARI) a(n) = sumdiv(n, d, 1+logint(d, 2)); \\ _Michel Marcus_, Dec 11 2020
%o A182627 (Python)
%o A182627 from sympy import divisors
%o A182627 def a(n): return sum(d.bit_length() for d in divisors(n))
%o A182627 print([a(n) for n in range(1, 72)]) # _Michael S. Branicky_, Apr 21 2022
%Y A182627 Cf. A093653, A135539, A182620, A182621, A182628.
%Y A182627 Cf. A093653 (number of 1's in binary expansion of all divisors of n).
%Y A182627 Cf. A226590 (number of 0's in binary expansion of all divisors of n).
%K A182627 nonn,base,easy
%O A182627 1,2
%A A182627 _Omar E. Pol_, Nov 23 2010