This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182648 #24 Aug 20 2024 13:37:42 %S A182648 8,95,998,9998,99998,999997,9999998,99999997,999999991,9999999997, %T A182648 99999999997,999999999997,9999999999989,99999999999997, %U A182648 999999999999998,9999999999999994,99999999999999989,999999999999999993,9999999999999999991,99999999999999999983 %N A182648 a(n) is the largest n-digit number with exactly 4 divisors. %C A182648 a(n) is the largest n-digit number of the form p^3 or p^1*q^1, (p, q = distinct primes). %C A182648 Large overlap with A098450 which considers p^2 and p*q with n digits. - _R. J. Mathar_, Apr 23 2024 %H A182648 Michael S. Branicky, <a href="/A182648/b182648.txt">Table of n, a(n) for n = 1..62</a> %F A182648 A000005(a(n)) = 4. %t A182648 Table[k=10^n-1; While[DivisorSigma[0,k] != 4, k--]; k, {n,10}] %t A182648 lnd4[n_]:=Module[{k=10^n-1},While[DivisorSigma[0,k]!=4,k--];k]; Array[lnd4,20] (* _Harvey P. Dale_, Aug 20 2024 *) %o A182648 (Python) %o A182648 from sympy import divisors %o A182648 def a(n): %o A182648 k = 10**n - 1 %o A182648 divs = -1 %o A182648 while divs != 4: %o A182648 k -= 1 %o A182648 divs = 0 %o A182648 for d in divisors(k, generator=True): %o A182648 divs += 1 %o A182648 if divs > 4: break %o A182648 return k %o A182648 print([a(n) for n in range(1, 21)]) # _Michael S. Branicky_, Jun 10 2021 %Y A182648 Subsequence of A030513. %Y A182648 Cf. A174322, A098450. %K A182648 nonn,base %O A182648 1,1 %A A182648 _Jaroslav Krizek_, Nov 27 2010 %E A182648 a(19) and beyond from _Michael S. Branicky_, Jun 10 2021