cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182655 Floor-sum sequence of r, with r=(3+sqrt(5))/2 and a(1)=1, a(2)=2.

Original entry on oeis.org

1, 2, 7, 20, 23, 54, 57, 62, 65, 70, 78, 112, 143, 146, 151, 154, 159, 164, 167, 172, 175, 180, 185, 188, 193, 201, 206, 209, 214, 222, 230, 235, 243, 256, 264, 290, 295, 298, 303, 311, 319, 324, 332, 345, 353, 366
Offset: 1

Views

Author

Clark Kimberling, Nov 26 2010

Keywords

Comments

Let S be the set generated by these rules: (1) if m and n are in S and m
Let B be the Beatty sequence of r. Then a floor-sum sequence of r is a subsequence of B if and only if a(1) and a(2) are terms of B.

Examples

			7 is in the sequence because floor(r*a(1)+r*a(2))=floor(r+2r)=7
57 is in the sequence because floor(r*a(2)+r*a(4))=floor(r*22)=57
61 is not in the sequence because 23*r=60.21... and 24*r=62.83... so there are no integers x,y with floor(r*(x+y))=61
60 is not in the sequence because floor(r*(x+y))=60 requires x+y=23, and no pair of elements of the sequence sum to 23
		

Crossrefs