This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182670 #17 Apr 25 2019 03:19:43 %S A182670 2,3,8,16,17,29,30,32,38,40,50,51,53,55,56,59,61,64,66,67,69,72,74,76, %T A182670 77,79,84,85,87,88,90,92,93,95,98,100,101,103,106,108,110,111,113,114, %U A182670 116,118,119,121,122,124,126,127,129,131,132,134,135,137,139,140 %N A182670 Floor-sum sequence of r, where r = golden ratio = (1+sqrt(5))/2 and a(1)=2, a(2)=3. %C A182670 Let S be the set generated by these rules: (1) if m and n are in S and m<n, then floor(mr+nr) is in S; (2) two or more specific numbers are in S. The floor-sum sequence determined by (1) and (2) results by arranging the elements of S in strictly increasing order. %C A182670 Let B be the Beatty sequence of r. Then a floor-sum sequence of r is a subsequence of B if and only if a(1) and a(2) are terms of B. Thus, A182670 is not a subsequence of the lower Wythoff sequence, A000201. %H A182670 Iain Fox, <a href="/A182670/b182670.txt">Table of n, a(n) for n = 1..3000</a> %e A182670 a(3) = floor(2r+3r) = 8. %p A182670 A182670 := proc(amax) %p A182670 a := {2,3} ; %p A182670 r := (1+sqrt(5))/2 ; %p A182670 while true do %p A182670 anew := {} ; %p A182670 for i in a do for j in a do %p A182670 if i <> j then S := floor(r*(i+j)) ; if is(S <= amax) then anew := anew union { S }; end if; %p A182670 end if; %p A182670 end do: %p A182670 end do: %p A182670 if a union anew = a then %p A182670 return sort(a) ; %p A182670 end if; %p A182670 a := a union anew ; %p A182670 end do: %p A182670 end proc: %p A182670 A182670(140) ; %o A182670 (PARI) lista(nn) = my(S=[2, 3], r=(1+sqrt(5))/2, new, k); while(1, new=[]; for(m=1, #S, for(n=m+1, #S, k=floor(r*(S[m]+S[n])); if(k<=nn, new=setunion(new, [k])))); if(S==setunion(S, new), return(S)); S=setunion(S, new)) \\ _Iain Fox_, Apr 25 2019 %Y A182670 Cf. A000201, A182653, A182669. %K A182670 nonn %O A182670 1,1 %A A182670 _Clark Kimberling_, Nov 27 2010