This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182691 #10 Sep 30 2018 20:21:05 %S A182691 3,4,13,18,61,86,293,414,1413,1998,6821,9646,32933,46574,159013, %T A182691 224878,767781,1085806,3707173,5242734,17899813,25314158,86427941, %U A182691 122227566,417311013,590166894,2014955813,2849577838,9729067301 %N A182691 Composite Beatty sequence of sqrt(2). %C A182691 The bisection (4,18,86,...) is a subsequence of A001951. %C A182691 The bisection (3,13,61,...) is a subsequence of A001952. %C A182691 See the comment at A107857 regarding Beatty sequences. %H A182691 G. C. Greubel, <a href="/A182691/b182691.txt">Table of n, a(n) for n = 1..1000</a> %F A182691 a(n) = floor(s*a(n-1)) if n odd, a(n)=floor(r*a(n-1)) if n even, where r=sqrt(2), s=2+r, a(1)=floor(s). %e A182691 a(1)=floor(2+sqrt(2))=3, a(2)=floor(r*a(1))=4. %p A182691 Digits := 16 ; %p A182691 A182691 := proc(n) option remember; local r,s ; r := sqrt(2) ; s := 2+r ; if n = 1 then floor(s) ; elif type(n,'odd') then floor(s*procname(n-1)) ; else floor(r*procname(n-1)) ; end if; end proc: %p A182691 seq(A182691(n),n=1..30) ; %t A182691 a[1]:= 3; a[n_]:= If[OddQ[n], Floor[(2+Sqrt[2])*a[n-1]], Floor[Sqrt[2]*a[n-1]]]; Table[a[n], {n, 1, 50}] (* _G. C. Greubel_, Sep 29 2018 *) %Y A182691 Cf. A001951, A001952, A107857. %K A182691 nonn %O A182691 1,1 %A A182691 _Clark Kimberling_, Nov 27 2010