cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182707 Sum of the parts of all partitions of n-1 plus the sum of the emergent parts of the partitions of n.

This page as a plain text file.
%I A182707 #29 Feb 11 2025 00:00:28
%S A182707 0,1,4,11,23,46,80,138,221,351,529,801,1161,1685,2380,3355,4624,6375,
%T A182707 8623,11658,15538,20664,27163,35660,46330,60082,77288,99197,126418,
%U A182707 160802,203246,256381,321700,402781,501962,624332,773235,955776,1177076,1446762,1772308
%N A182707 Sum of the parts of all partitions of n-1 plus the sum of the emergent parts of the partitions of n.
%C A182707 For more information about the emergent parts of the partitions of n see A182699 and A182709.
%H A182707 Vaclav Kotesovec, <a href="/A182707/b182707.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Jason Kimberley)
%F A182707 a(n) = A066186(n) - A046746(n) = A066186(n-1) + A182709(n).
%F A182707 a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)) * (1 - (sqrt(3/2)/Pi + Pi/(24*sqrt(6)))/sqrt(n)). - _Vaclav Kotesovec_, Jan 03 2019, extended Jul 06 2019
%e A182707 For n = 6 the partitions of 6-1=5 are (5);(3+2);(4+1);(2+2+1);(3+1+1);(2+1+1+1);(1+1+1+1+1) and the sum of the parts give 35, the same as 5*7. By other hand the emergent parts of the partitions of 6 are (2+2);(4);(3) and the sum give 11, so a(6) = 35+11 = 46.
%Y A182707 Cf. A000041, A046746, A066186, A135010, A138121, A182699, A182708, A182709.
%K A182707 nonn,easy
%O A182707 1,3
%A A182707 _Omar E. Pol_, Nov 28 2010