cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182712 Number of 2's in the last section of the set of partitions of n.

This page as a plain text file.
%I A182712 #56 May 16 2020 01:30:44
%S A182712 0,0,1,0,2,1,4,3,8,7,15,15,27,29,48,53,82,94,137,160,225,265,362,430,
%T A182712 572,683,892,1066,1370,1640,2078,2487,3117,3725,4624,5519,6791,8092,
%U A182712 9885,11752,14263,16922,20416,24167,29007,34254,40921,48213,57345,67409
%N A182712 Number of 2's in the last section of the set of partitions of n.
%C A182712 Essentially the same as A087787 but here a(n) is the number of 2's in the last section of n, not n-2. See also A100818.
%C A182712 Note that a(1)..a(11) coincide with a(2)..a(12) of A005291.
%C A182712 Also number of 2's in all partitions of n that do not contain 1's as a part, if n >= 1. Also 0 together with the first differences of A024786. - _Omar E. Pol_, Nov 13 2011
%C A182712 Also number of 2's in the n-th section of the set of partitions of any integer >= n. For the definition of "section" see A135010. - _Omar E. Pol_, Dec 01 2013
%H A182712 Alois P. Heinz, <a href="/A182712/b182712.txt">Table of n, a(n) for n = 0..1000</a>
%F A182712 It appears that A000041(n) = a(n+1) + a(n+2), n >= 0. - _Omar E. Pol_, Feb 04 2012
%F A182712 G.f.: (x^2/(1 + x))*Product_{k>=1} 1/(1 - x^k). - _Ilya Gutkovskiy_, Jan 03 2017
%F A182712 a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*sqrt(3)*n). - _Vaclav Kotesovec_, Jun 02 2018
%e A182712 a(6) = 4 counts the 2's in 6 = 4+2 = 2+2+2. The 2's in 6 = 3+2+1 = 2+2+1+1 = 2+1+1+1+1 do not count. - _Omar E. Pol_, Nov 13 2011
%e A182712 From _Omar E. Pol_, Oct 27 2012: (Start)
%e A182712 ----------------------------------
%e A182712 Last section               Number
%e A182712 of the set of                of
%e A182712 partitions of 6             2's
%e A182712 ----------------------------------
%e A182712 6 .......................... 0
%e A182712 3 + 3 ...................... 0
%e A182712 4 + 2 ...................... 1
%e A182712 2 + 2 + 2 .................. 3
%e A182712 .   1 ...................... 0
%e A182712 .       1 .................. 0
%e A182712 .       1 .................. 0
%e A182712 .           1 .............. 0
%e A182712 .           1 .............. 0
%e A182712 .               1 .......... 0
%e A182712 .                   1 ...... 0
%e A182712 ---------------------------------
%e A182712 .   8 - 4 =                  4
%e A182712 .
%e A182712 In the last section of the set of partitions of 6 the difference between the sum of the second column and the sum of the third column is 8 - 4 = 4, the same as the number of 2's, so a(6) = 4 (see also A024786).
%e A182712 (End)
%t A182712 Table[Count[Flatten@Cases[IntegerPartitions[n], x_ /; Last[x] != 1], 2], {n, 0, 49}] (* _Robert Price_, May 15 2020 *)
%o A182712 (Sage) A182712 = lambda n: sum(list(p).count(2) for p in Partitions(n) if 1 not in p) # _Omar E. Pol_, Nov 13 2011
%Y A182712 Column 2 of A194812.
%Y A182712 Cf. A005291, A087787, A100818, A135010, A138121, A182703, A182713, A182714.
%K A182712 nonn,easy
%O A182712 0,5
%A A182712 _Omar E. Pol_, Nov 28 2010