cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182713 Number of 3's in the last section of the set of partitions of n.

This page as a plain text file.
%I A182713 #64 Jan 15 2022 03:34:55
%S A182713 0,0,1,0,1,2,2,3,6,6,10,14,18,24,35,42,58,76,97,124,164,202,261,329,
%T A182713 412,514,649,795,992,1223,1503,1839,2262,2741,3346,4056,4908,5919,
%U A182713 7150,8568,10297,12320,14721,17542,20911,24808,29456,34870,41232,48652,57389
%N A182713 Number of 3's in the last section of the set of partitions of n.
%C A182713 Also number of 3's in all partitions of n that do not contain 1 as a part.
%C A182713 Also 0 together with the first differences of A024787. - _Omar E. Pol_, Nov 13 2011
%C A182713 a(n) is the number of partitions of n having fewer 1s than 2s; e.g., a(7) counts these 3 partitions: [5, 2], [3, 2, 2], [2, 2, 2, 1]. - _Clark Kimberling_, Mar 31 2014
%C A182713 The last section of the set of partitions of n is also the n-th section of the set of partitions of any integer >= n. - _Omar E. Pol_, Apr 07 2014
%H A182713 Alois P. Heinz, <a href="/A182713/b182713.txt">Table of n, a(n) for n = 1..1000</a>
%F A182713 It appears that A000041(n) = a(n+1) + a(n+2) + a(n+3), n >= 0. - _Omar E. Pol_, Feb 04 2012
%F A182713 a(n) ~ A000041(n)/3 ~ exp(Pi*sqrt(2*n/3)) / (12*sqrt(3)*n). - _Vaclav Kotesovec_, Jan 03 2019
%e A182713 a(7) = 2 counts the 3's in 7 = 4+3 = 3+2+2. The 3's in 7 = 3+3+1 = 3+2+1+1 = 3+1+1+1+1 do not count.
%e A182713 From _Omar E. Pol_, Oct 27 2012: (Start)
%e A182713 --------------------------------------
%e A182713 Last section                   Number
%e A182713 of the set of                    of
%e A182713 partitions of 7                 3's
%e A182713 --------------------------------------
%e A182713 7 .............................. 0
%e A182713 4 + 3 .......................... 1
%e A182713 5 + 2 .......................... 0
%e A182713 3 + 2 + 2 ...................... 1
%e A182713 .   1 .......................... 0
%e A182713 .       1 ...................... 0
%e A182713 .       1 ...................... 0
%e A182713 .           1 .................. 0
%e A182713 .       1 ...................... 0
%e A182713 .           1 .................. 0
%e A182713 .           1 .................. 0
%e A182713 .               1 .............. 0
%e A182713 .               1 .............. 0
%e A182713 .                   1 .......... 0
%e A182713 .                       1 ...... 0
%e A182713 ------------------------------------
%e A182713 .       5 - 3 =                  2
%e A182713 .
%e A182713 In the last section of the set of partitions of 7 the difference between the sum of the third column and the sum of the fourth column is 5 - 3 = 2 equaling the number of 3's, so a(7) = 2 (see also A024787).
%e A182713 (End)
%p A182713 b:= proc(n, i) option remember; local g, h;
%p A182713       if n=0 then [1, 0]
%p A182713     elif i<2 then [0, 0]
%p A182713     else g:= b(n, i-1); h:= `if`(i>n, [0, 0], b(n-i, i));
%p A182713          [g[1]+h[1], g[2]+h[2]+`if`(i=3, h[1], 0)]
%p A182713       fi
%p A182713     end:
%p A182713 a:= n-> b(n, n)[2]:
%p A182713 seq(a(n), n=1..70);  # _Alois P. Heinz_, Mar 18 2012
%t A182713 z = 60; f[n_] := f[n] = IntegerPartitions[n]; t1 = Table[Count[f[n], p_ /; Count[p, 1] < Count[p, 2]], {n, 0, z}] (* _Clark Kimberling_, Mar 31 2014 *)
%t A182713 b[n_, i_] := b[n, i] = Module[{g, h}, If[n == 0, {1, 0}, If[i<2, {0, 0}, g = b[n, i-1]; h = If[i>n, {0, 0}, b[n-i, i]]; Join[g[[1]] + h[[1]], g[[2]] + h[[2]] + If[i == 3, h[[1]], 0]]]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 70}] (* _Jean-François Alcover_, Nov 30 2015, after _Alois P. Heinz_ *)
%t A182713 Table[Count[Flatten@Cases[IntegerPartitions[n], x_ /; Last[x] != 1], 3], {n, 51}] (* _Robert Price_, May 15 2020 *)
%o A182713 (Sage) A182713 = lambda n: sum(list(p).count(3) for p in Partitions(n) if 1 not in p) # _D. S. McNeil_, Nov 29 2010
%Y A182713 Column 3 of A194812.
%Y A182713 Cf. A135010, A138121, A174455, A182703, A182712, A182714, A240056.
%K A182713 nonn
%O A182713 1,6
%A A182713 _Omar E. Pol_, Nov 28 2010