cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182714 Number of 4's in the last section of the set of partitions of n.

This page as a plain text file.
%I A182714 #64 May 16 2020 01:31:09
%S A182714 0,0,0,1,0,1,1,3,2,5,5,10,10,17,19,31,34,51,60,86,100,139,165,223,265,
%T A182714 349,418,543,648,827,992,1251,1495,1866,2230,2758,3289,4033,4803,5852,
%U A182714 6949,8411,9973,12005,14194,17002,20060,23919,28153,33426,39256,46438
%N A182714 Number of 4's in the last section of the set of partitions of n.
%C A182714 Zero together with the first differences of A024788.
%C A182714 Also number of 4's in all partitions of n that do not contain 1 as a part.
%C A182714 a(n) is the number of partitions of n such that m(1) < m(3), where m = multiplicity; e.g., a(7) counts these 3 partitions: [4, 3], [3, 3, 1], [3, 2, 2]. - _Clark Kimberling_, Apr 01 2014
%C A182714 The last section of the set of partitions of n is also the n-th section of the set of partitions of any integer >= n. - _Omar E. Pol_, Apr 07 2014
%H A182714 Alois P. Heinz, <a href="/A182714/b182714.txt">Table of n, a(n) for n = 1..1000</a>
%F A182714 It appears that A000041(n) = a(n+1) + a(n+2) + a(n+3) + a(n+4), n >= 0. - _Omar E. Pol_, Feb 04 2012
%e A182714 a(8) = 3 counts the 4's in 8 = 4+4 = 4+2+2. The 4's in 8 = 4+3+1 = 4+2+1+1 = 4+1+1+1+1 do not count.
%e A182714 From _Omar E. Pol_, Oct 25 2012: (Start)
%e A182714 --------------------------------------
%e A182714 Last section                   Number
%e A182714 of the set of                    of
%e A182714 partitions of 8                 4's
%e A182714 --------------------------------------
%e A182714 8 .............................. 0
%e A182714 4 + 4 .......................... 2
%e A182714 5 + 3 .......................... 0
%e A182714 6 + 2 .......................... 0
%e A182714 3 + 3 + 2 ...................... 0
%e A182714 4 + 2 + 2 ...................... 1
%e A182714 2 + 2 + 2 + 2 .................. 0
%e A182714 .   1 .......................... 0
%e A182714 .       1 ...................... 0
%e A182714 .       1 ...................... 0
%e A182714 .           1 .................. 0
%e A182714 .       1 ...................... 0
%e A182714 .           1 .................. 0
%e A182714 .           1 .................. 0
%e A182714 .               1 .............. 0
%e A182714 .           1 .................. 0
%e A182714 .               1 .............. 0
%e A182714 .               1 .............. 0
%e A182714 .                   1 .......... 0
%e A182714 .                   1 .......... 0
%e A182714 .                       1 ...... 0
%e A182714 .                           1 .. 0
%e A182714 ------------------------------------
%e A182714 .           6 - 3 =              3
%e A182714 .
%e A182714 In the last section of the set of partitions of 8 the difference between the sum of the fourth column and the sum of the fifth column is 6 - 3 = 3 equaling the number of 4's, so a(8) = 3 (see also A024788).
%e A182714 (End)
%p A182714 b:= proc(n, i) option remember; local g, h;
%p A182714       if n=0 then [1, 0]
%p A182714     elif i<2 then [0, 0]
%p A182714     else g:= b(n, i-1); h:= `if`(i>n, [0, 0], b(n-i, i));
%p A182714          [g[1]+h[1], g[2]+h[2]+`if`(i=4, h[1], 0)]
%p A182714       fi
%p A182714     end:
%p A182714 a:= n-> b(n, n)[2]:
%p A182714 seq (a(n), n=1..70);  # _Alois P. Heinz_, Mar 19 2012
%t A182714 z = 60; f[n_] := f[n] = IntegerPartitions[n]; t1 = Table[Count[f[n], p_ /; Count[p, 1] < Count[p, 3]], {n, 0, z}] (* _Clark Kimberling_, Apr 01 2014 *)
%t A182714 b[n_, i_] := b[n, i] = Module[{g, h}, If[n==0, {1, 0}, If[i<2, {0, 0}, g = b[n, i-1]; h = If[i>n, {0, 0}, b[n-i, i]]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + If[i==4, h[[1]], 0]}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 70}] (* _Jean-François Alcover_, Sep 21 2015, after _Alois P. Heinz_ *)
%t A182714 Table[Count[Flatten@Cases[IntegerPartitions[n], x_ /; Last[x] != 1], 4], {n, 52}] (* _Robert Price_, May 15 2020 *)
%o A182714 (Sage) A182714 = lambda n: sum(list(p).count(4) for p in Partitions(n) if 1 not in p)
%Y A182714 Column 4 of A194812.
%Y A182714 Cf. A015739, A024788, A135010, A138121, A182703, A182712, A182713, A240058.
%K A182714 nonn
%O A182714 1,8
%A A182714 _Omar E. Pol_, Nov 13 2011