A182732
The limit of row A182730(n,.) as n-> infinity.
Original entry on oeis.org
2, 4, 3, 6, 5, 4, 8, 4, 7, 6, 5, 10, 3, 6, 5, 9, 4, 8, 7, 6, 12, 5, 4, 8, 7, 6, 11, 6, 5, 10, 9, 8, 7, 14, 4, 7, 6, 5, 10, 5, 9, 8, 7, 13, 4, 8, 7, 6, 12, 6, 11, 10, 9, 8, 16, 3, 6, 5, 9, 4, 8, 7, 6, 12, 7, 6, 11, 5, 10, 9, 8, 15, 6, 5, 10, 9, 8, 7, 14, 8, 7, 13, 6, 12, 11, 10, 9, 18
Offset: 1
One together with where records occur give
A182746.
A138121
Triangle read by rows in which row n lists the partitions of n that do not contain 1 as a part in juxtaposed reverse-lexicographical order followed by A000041(n-1) 1's.
Original entry on oeis.org
1, 2, 1, 3, 1, 1, 4, 2, 2, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 1, 6, 3, 3, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 7, 4, 3, 5, 2, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 4, 4, 5, 3, 6, 2, 3, 3, 2, 4, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 5, 4, 6, 3, 3, 3, 3, 7, 2, 4, 3, 2, 5, 2, 2, 3, 2, 2
Offset: 1
Triangle begins:
[1];
[2],[1];
[3],[1],[1];
[4],[2,2],[1],[1],[1];
[5],[3,2],[1],[1],[1],[1],[1];
[6],[3,3],[4,2],[2,2,2],[1],[1],[1],[1],[1],[1],[1];
[7],[4,3],[5,2],[3,2,2],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1];
...
The illustration of the three views of the section model of partitions (version "tree" with seven sections) shows the connection between several sequences.
---------------------------------------------------------
Partitions A194805 Table 1.0
. of 7 p(n) A194551 A135010
---------------------------------------------------------
7 15 7 7 . . . . . .
4+3 4 4 . . . 3 . .
5+2 5 5 . . . . 2 .
3+2+2 3 3 . . 2 . 2 .
6+1 11 6 1 6 . . . . . 1
3+3+1 3 1 3 . . 3 . . 1
4+2+1 4 1 4 . . . 2 . 1
2+2+2+1 2 1 2 . 2 . 2 . 1
5+1+1 7 1 5 5 . . . . 1 1
3+2+1+1 1 3 3 . . 2 . 1 1
4+1+1+1 5 4 1 4 . . . 1 1 1
2+2+1+1+1 2 1 2 . 2 . 1 1 1
3+1+1+1+1 3 1 3 3 . . 1 1 1 1
2+1+1+1+1+1 2 2 1 2 . 1 1 1 1 1
1+1+1+1+1+1+1 1 1 1 1 1 1 1 1 1
. 1 ---------------
. *<------- A000041 -------> 1 1 2 3 5 7 11
. A182712 -------> 1 0 2 1 4 3
. A182713 -------> 1 0 1 2 2
. A182714 -------> 1 0 1 1
. 1 0 1
. A141285 A182703 1 0
. A182730 A182731 1
---------------------------------------------------------
. A138137 --> 1 2 3 6 9 15..
---------------------------------------------------------
. A182746 <--- 4 . 2 1 0 1 2 . 4 ---> A182747
---------------------------------------------------------
.
. A182732 <--- 6 3 4 2 1 3 5 4 7 ---> A182733
. . . . . 1 . . . .
. . . . 2 1 . . . .
. . 3 . . 1 2 . . .
. Table 2.0 . . 2 2 1 . . 3 . Table 2.1
. . . . . 1 2 2 . .
. 1 . . . .
.
. A182982 A182742 A194803 A182983 A182743
. A182992 A182994 A194804 A182993 A182995
---------------------------------------------------------
.
From _Omar E. Pol_, Sep 03 2013: (Start)
Illustration of initial terms (n = 1..6). The table shows the six sections of the set of partitions of 6. Note that before the dissection the set of partitions was in the ordering mentioned in A026792. More generally, the six sections of the set of partitions of 6 also can be interpreted as the first six sections of the set of partitions of any integer >= 6.
Illustration of initial terms:
---------------------------------------
n j Diagram Parts
---------------------------------------
. _
1 1 |_| 1;
. _ _
2 1 |_ | 2,
2 2 |_| . 1;
. _ _ _
3 1 |_ _ | 3,
3 2 | | . 1,
3 3 |_| . . 1;
. _ _ _ _
4 1 |_ _ | 4,
4 2 |_ _|_ | 2, 2,
4 3 | | . 1,
4 4 | | . . 1,
4 5 |_| . . . 1;
. _ _ _ _ _
5 1 |_ _ _ | 5,
5 2 |_ _ _|_ | 3, 2,
5 3 | | . 1,
5 4 | | . . 1,
5 5 | | . . 1,
5 6 | | . . . 1,
5 7 |_| . . . . 1;
. _ _ _ _ _ _
6 1 |_ _ _ | 6,
6 2 |_ _ _|_ | 3, 3,
6 3 |_ _ | | 4, 2,
6 4 |_ _|_ _|_ | 2, 2, 2,
6 5 | | . 1,
6 6 | | . . 1,
6 7 | | . . 1,
6 8 | | . . . 1,
6 9 | | . . . 1,
6 10 | | . . . . 1,
6 11 |_| . . . . . 1;
...
(End)
-
less[run1_, run2_] := (lg1 = run1 // Length; lg2 = run2 // Length; lg = Max[lg1, lg2]; r1 = If[lg1 == lg, run1, PadRight[run1, lg, 0]]; r2 = If[lg2 == lg, run2, PadRight[run2, lg, 0]]; Order[r1, r2] != -1); row[n_] := Join[Array[1 &, {PartitionsP[n - 1]}], Sort[Reverse /@ Select[IntegerPartitions[n], FreeQ[#, 1] &], less]] // Flatten // Reverse; Table[row[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Jan 15 2013 *)
Table[Reverse/@Reverse@DeleteCases[Sort@PadRight[Reverse/@Cases[IntegerPartitions[n], x_ /; Last[x]!=1]], x_ /; x==0, 2]~Join~ConstantArray[{1}, PartitionsP[n - 1]], {n, 1, 9}] // Flatten (* Robert Price, May 11 2020 *)
A141285
Largest part of the n-th partition of j in the list of colexicographically ordered partitions of j, if 1 <= n <= A000041(j).
Original entry on oeis.org
1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 3, 5, 4, 7, 2, 4, 3, 6, 5, 4, 8, 3, 5, 4, 7, 3, 6, 5, 9, 2, 4, 3, 6, 5, 4, 8, 4, 7, 6, 5, 10, 3, 5, 4, 7, 3, 6, 5, 9, 5, 4, 8, 7, 6, 11, 2, 4, 3, 6, 5, 4, 8, 4, 7, 6, 5, 10, 3, 6, 5, 9, 4, 8, 7, 6, 12
Offset: 1
Written as a triangle T(j,k) the sequence begins:
1;
2;
3;
2, 4;
3, 5;
2, 4, 3, 6;
3, 5, 4, 7;
2, 4, 3, 6, 5, 4, 8;
3, 5, 4, 7, 3, 6, 5, 9;
2, 4, 3, 6, 5, 4, 8, 4, 7, 6, 5, 10;
3, 5, 4, 7, 3, 6, 5, 9, 5, 4, 8, 7, 6, 11;
...
------------------------------------------
n A000041 a(n)
------------------------------------------
1 = p(1) 1
2 = p(2) 2 .
3 = p(3) . 3
4 2 .
5 = p(4) 4 .
6 . 3
7 = p(5) . 5
8 2 .
9 4 .
10 3 .
11 = p(6) 6 .
12 . 3
13 . 5
14 . 4
15 = p(7) . 7
...
From _Omar E. Pol_, Aug 22 2013: (Start)
Illustration of initial terms (n = 1..11) in three ways: as the largest parts of the partitions of 6 (see A026792), also as the largest parts of the regions of the diagram, also as the diagonal of triangle. By definition of "region" the largest part of the n-th region is also the largest part of the n-th partition (see below):
--------------------------------------------------------
. Diagram Triangle in which
Partitions of regions rows are partitions
of 6 and partitions and columns are regions
--------------------------------------------------------
. _ _ _ _ _ _
6 _ _ _ | 6
3+3 _ _ _|_ | 3 3
4+2 _ _ | | 4 2
2+2+2 _ _|_ _|_ | 2 2 2
5+1 _ _ _ | | 5 1
3+2+1 _ _ _|_ | | 3 1 1
4+1+1 _ _ | | | 4 1 1
2+2+1+1 _ _|_ | | | 2 2 1 1
3+1+1+1 _ _ | | | | 3 1 1 1
2+1+1+1+1 _ | | | | | 2 1 1 1 1
1+1+1+1+1+1 | | | | | | 1 1 1 1 1 1
...
The equivalent sequence for compositions is A001511. Explanation: for the positive integer j the diagram of regions of the set of compositions of j has 2^(j-1) regions. The largest part of the n-th region is A001511(n). The number of parts is A006519(n). On the other hand the diagram of regions of the set of partitions of j has A000041(j) regions. The largest part of the n-th region is a(n) = A001511(A228354(n)). The number of parts is A194446(n). Both diagrams have j sections. The diagram for partitions can be interpreted as one of the three views of a three dimensional diagram of compositions in which the rows of partitions are in orthogonal direction to the rest. For the first five sections of the diagrams see below:
--------------------------------------------------------
. Diagram Diagram
. of regions of regions
. and compositions and partitions
---------------------------------------------------------
. j = 1 2 3 4 5 j = 1 2 3 4 5
---------------------------------------------------------
n A001511 A228354 a(n)
---------------------------------------------------------
1 1 _| | | | | ............ 1 1 _| | | | |
2 2 _ _| | | | ............ 2 2 _ _| | | |
3 1 _| | | | ......... 4 3 _ _ _| | |
4 3 _ _ _| | | ../ ....... 6 2 _ _| | |
5 1 _| | | | / ....... 8 4 _ _ _ _| |
6 2 _ _| | | ../ / .... 12 3 _ _ _| |
7 1 _| | | / / . 16 5 _ _ _ _ _|
8 4 _ _ _ _| | ../ / /
9 1 _| | | | / /
10 2 _ _| | | / /
11 1 _| | | / /
12 3 _ _ _| | ../ /
13 1 _| | | /
14 2 _ _| | /
15 1 _| | /
16 5 _ _ _ _ _| ../
...
Also we can draw an infinite Dyck path in which the n-th odd-indexed line segment has a(n) up-steps and the n-th even-indexed line segment has A194446(n) down-steps. Note that the height of the n-th largest peak between two successive valleys at height 0 is also the partition number A000041(n). See below:
. 5
. /\ 3
. 4 / \ 4 /\
. /\ / \ /\ /
. 3 / \ 3 / \ / \/
. 2 /\ 2 / \ /\/ \ 2 /
. 1 /\ / \ /\/ \ / \ /\/
. /\/ \/ \/ \/ \/
.
.(End)
Cf.
A000041,
A135010,
A182730,
A182731,
A182732,
A182733,
A182982,
A182983,
A182703,
A193870,
A194446,
A194447,
A194550,
A206437,
A210979,
A210980,
A211978,
A220517,
A225600,
A225610.
-
Last/@DeleteCases[DeleteCases[Sort@PadRight[Reverse/@IntegerPartitions[13]], x_ /; x == 0, 2], {}] (* updated _Robert Price, May 15 2020 *)
Better definition and edited by
Omar E. Pol, Oct 17 2013
A182742
Table of partitions that do not contain 1 as a part for even integers.
Original entry on oeis.org
2, 4, 2, 3, 2, 2, 6, 3, 2, 2, 5, 2, 2, 2, 2, 4, 3, 2, 2, 2, 2, 8, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 7, 3, 2, 2, 2, 2, 2, 2, 2, 6, 3, 3, 2, 2, 2, 2, 2, 2, 2, 5, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 10, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 3, 2, 2
Offset: 1
Array begins:
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 2, 2, 2, 2, 2, 2, 2, 2,
6, 2, 2, 2, 2, 2, 2, 2, 2,
5, 3, 2, 2, 2, 2, 2, 2,
4, 4, 2, 2, 2, 2, 2,
8, 2, 2, 2, 2, 2,
4, 3, 3, 2, 2,
7, 3, 2, 2,
6, 4, 2,
5, 5,
10,
A182733
The limit of row A182731(n,.) as n-> infinity.
Original entry on oeis.org
3, 5, 4, 7, 3, 6, 5, 9, 5, 4, 8, 7, 6, 11, 4, 7, 6, 5, 10, 5, 9, 8, 7, 13, 3, 6, 5, 9, 4, 8, 7, 6, 12, 7, 6, 11, 5, 10, 9, 8, 15, 5, 4, 8, 7, 6, 11, 6, 5, 10, 9, 8, 7, 14, 5, 9, 8, 7, 13, 7, 6, 12, 11, 10, 9, 17, 4, 7, 6, 5, 10, 5, 9, 8, 7, 13, 4, 8, 7, 6, 12, 6, 11, 10, 9, 8, 16, 7, 6, 11, 5, 10, 9, 8, 15, 9, 8, 7, 14, 7, 13, 12, 11, 10, 19
Offset: 1
Zero together with where records occur give
A182747.
A182731
Odd-indexed rows of triangle A141285.
Original entry on oeis.org
1, 3, 3, 5, 3, 5, 4, 7, 3, 5, 4, 7, 3, 6, 5, 9, 3, 5, 4, 7, 3, 6, 5, 9, 5, 4, 8, 7, 6, 11
Offset: 1
Triangle begins:
1,
3,
3, 5,
3, 5, 4, 7,
3, 5, 4, 7, 3, 6, 5, 9,
3, 5, 4, 7, 3, 6, 5, 9, 5, 4, 8, 7, 6, 11,
A182744
Second column of the table A182742.
Original entry on oeis.org
2, 2, 3, 2, 3, 4, 2, 3, 3, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 6, 2, 3, 4, 3, 4, 5, 3, 4, 5, 4, 5, 6, 7, 2
Offset: 1
A194551
a(n) is the n-th largest part that are visible in one of the three views of the version "Tree" of the section model of partitions.
Original entry on oeis.org
1, 2, 3, 4, 5, 3, 6, 4, 7, 5, 4, 8, 3, 6, 5, 9, 4, 7, 6, 5, 10, 5, 4, 8, 7, 6, 11, 3, 6, 5, 9, 4, 8, 7, 6, 12, 4, 7, 6, 5, 10, 5, 9, 8, 7, 13, 5, 4, 8, 7, 6, 11, 6, 5, 10, 9, 8, 7, 14, 3, 6, 5, 9, 4, 8, 7, 6, 12, 7, 6, 11, 5, 10, 9, 8, 15
Offset: 1
Written as a triangle begins:
1;
2;
3;
4;
5;
3,6;
4,7;
5,4,8;
3,6,5,9;
4,7,6,5,10;
5,4,8,7,6,11;
3,6,5,9,4,8,7,6,12;
4,7,6,5,10,5,9,8,7,13;
5,4,8,7,6,11,6,5,10,9,8,7,14;
...
Row n has length A008483(n), if n >= 3.
-
Join[{1},Table[Drop[l = Last/@DeleteCases[Sort@PadRight[Reverse /@ Cases[IntegerPartitions[n], x_ /; Last[x] != 1]], x_ /; x == 0, 2], First@FirstPosition[l, n - 2, {0}]], {n, 2, 15}]] // Flatten (* Robert Price, May 15 2020 *)
Showing 1-8 of 8 results.
Comments