This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182746 #43 Jun 20 2022 04:40:41 %S A182746 1,1,2,4,7,12,21,34,55,88,137,210,320,478,708,1039,1507,2167,3094, %T A182746 4378,6153,8591,11914,16424,22519,30701,41646,56224,75547,101066, %U A182746 134647,178651,236131,310962,408046,533623,695578,903811,1170827,1512301,1947826,2501928 %N A182746 Bisection (even part) of number of partitions that do not contain 1 as a part A002865. %C A182746 a(n+1) is the number of partitions p of 2n-1 such that (number of parts of p) is a part of p, for n >=0. - _Clark Kimberling_, Mar 02 2014 %H A182746 Alois P. Heinz, <a href="/A182746/b182746.txt">Table of n, a(n) for n = 0..1000</a> %H A182746 Marco Baggio, Vasilis Niarchos, Kyriakos Papadodimas, and Gideon Vos, <a href="http://arxiv.org/abs/1610.07612">Large-N correlation functions in N = 2 superconformal QCD</a>, arXiv preprint arXiv:1610.07612 [hep-th], 2016. %H A182746 K. Blum, <a href="https://arxiv.org/abs/2103.03196">Bounds on the Number of Graphical Partitions</a>, arXiv:2103.03196 [math.CO], 2021. See Table on p. 7. %F A182746 a(n) = p(2*n) - p(2*n-1), where p is the partition function, A000041. - _George Beck_, Jun 05 2017 [Shifted by _Georg Fischer_, Jun 20 2022] %p A182746 b:= proc(n, i) option remember; %p A182746 if n<0 then 0 %p A182746 elif n=0 then 1 %p A182746 elif i<2 then 0 %p A182746 else b(n, i-1) +b(n-i, i) %p A182746 fi %p A182746 end: %p A182746 a:= n-> b(2*n, 2*n): %p A182746 seq(a(n), n=0..40); # _Alois P. Heinz_, Dec 01 2010 %t A182746 Table[Count[IntegerPartitions[2 n -1], p_ /; MemberQ[p, Length[p]]], {n, 20}] (* _Clark Kimberling_, Mar 02 2014 *) %t A182746 b[n_, i_] := b[n, i] = Which[n<0, 0, n==0, 1, i<2, 0, True, b[n, i-1] + b[n-i, i]]; a[n_] := b[2*n, 2*n]; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Sep 21 2015, after _Alois P. Heinz_ *) %t A182746 a[n_] := PartitionsP[2*n] - PartitionsP[2*n - 1]; Table[a[n], {n, 0, 40}] (* _George Beck_, Jun 05 2017 *) %o A182746 (PARI) a(n)=numbpart(2*n)-numbpart(2*n-1) \\ _Charles R Greathouse IV_, Jun 06 2017 %Y A182746 Cf. A000041, A002865, A058696, A135010, A138121, A182740, A182742, A182743, A182747. %K A182746 nonn,easy %O A182746 0,3 %A A182746 _Omar E. Pol_, Dec 01 2010 %E A182746 More terms from _Alois P. Heinz_, Dec 01 2010