This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182753 #17 Jan 14 2025 13:52:35 %S A182753 1,14,35,490,1225,17150,42875,600250,1500625,21008750,52521875, %T A182753 735306250,1838265625,25735718750,64339296875,900750156250, %U A182753 2251875390625,31526255468750,78815638671875,1103418941406250,2758547353515625,38619662949218750,96549157373046875 %N A182753 Expansion of (1 + 14*x)/(1 - 35*x^2). %C A182753 a(1) = 1, a(2) = 14, for n >= 3; a(n) = the smallest number h > a(n-1) such that [[a(n-2) + a(n-1)] * [a(n-2) + h] * [a(n-1) + h]] / [a(n-2) * a(n-1) * h] is an integer (= 54). %C A182753 5^(floor((n - 1)/2)) | a(n), n>=1. - _G. C. Greubel_, Jan 11 2018 %H A182753 G. C. Greubel, <a href="/A182753/b182753.txt">Table of n, a(n) for n = 1..1000</a> %H A182753 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,35). %F A182753 a(2n) = 14 * a(2n-1), a(2n+1) = (5/2) * a(2n). %F A182753 a(2n) = 14*35^(n-1), a(2n+1) = 35^n. %e A182753 For n = 5; a(3) = 35, a(4) = 490, a(5) = 1225 before [(35+490)*(35+1225)*(490+1225)] / (35*490*1225) = 54. %t A182753 LinearRecurrence[{0, 35}, {1, 14}, 30] (* or *) CoefficientList[Series[(1 + 14*x)/(1-35*x^2), {x,0,50}], x] (* _G. C. Greubel_, Jan 11 2018 *) %o A182753 (PARI) Vec((1+14*x)/(1-35*x^2)+O(x^99)) \\ _Charles R Greathouse IV_, Sep 25 2012 %o A182753 (Magma) I:=[1,14]; [n le 2 select I[n] else 35*Self(n-2): n in [1..30]]; // _G. C. Greubel_, Jan 11 2018 %Y A182753 Cf. A182751, A182752, A182754, A182755, A182756, A182757. %K A182753 nonn,easy %O A182753 1,2 %A A182753 _Jaroslav Krizek_, Nov 27 2010 %E A182753 Terms a(15) onward added by _G. C. Greubel_, Jan 11 2018