This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182777 #16 Sep 08 2022 08:45:55 %S A182777 1,2,3,5,6,7,8,10,11,12,13,15,16,17,19,20,21,22,24,25,26,27,29,30,31, %T A182777 32,34,35,36,38,39,40,41,43,44,45,46,48,49,50,51,53,54,55,57,58,59,60, %U A182777 62,63,64,65,67,68,69,71,72,73,74,76,77,78,79,81,82,83,84,86 %N A182777 Beatty sequence for 3-sqrt(3). %C A182777 (1) 3 is the only number x for which the numbers r=x-sqrt(x) and s=x+sqrt(x) satisfy the Beatty equation %C A182777 1/r + 1/s = 1. %C A182777 (2) Let u=2-sqrt(3) and v=1. Jointly rank {j*u} and {k*v} as in the first comment at A182760; a(n) is the position of n*u. %C A182777 (3) The complement of A182777 is A182778, which gives the positions of the natural numbers k in the joint ranking. %H A182777 Vincenzo Librandi, <a href="/A182777/b182777.txt">Table of n, a(n) for n = 1..10000</a> %F A182777 a(n) = floor(n*(3-sqrt(3))). %t A182777 Table[Floor[(3-Sqrt[3]) n], {n, 68}] %o A182777 (Magma) [Floor(n*(3-Sqrt(3))): n in [1..80]]; // _Vincenzo Librandi_, Oct 25 2011 %o A182777 (PARI) vector(80, n, floor(n*(3-sqrt(3)))) \\ _G. C. Greubel_, Nov 23 2018 %o A182777 (Sage) [floor(n*(3-sqrt(3))) for n in (1..80)] # _G. C. Greubel_, Nov 23 2018 %Y A182777 Cf. A182760, A182778. %K A182777 nonn %O A182777 1,2 %A A182777 _Clark Kimberling_, Nov 30 2010 %E A182777 Typo in formula by _Vincenzo Librandi_, Oct 25 2011