This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182788 #37 Aug 01 2023 14:33:55 %S A182788 0,0,0,6,192,1620,7680,26250,72576,172872,368640,721710,1320000, %T A182788 2283996,3773952,5997810,9219840,13770000,20054016,28564182,39890880, %U A182788 54734820,73920000,98407386,129309312,167904600,215654400,274218750,345473856 %N A182788 Number of n-colorings of the 3 X 3 X 3 triangular grid. %C A182788 The 3 X 3 X 3 triangular grid has 3 rows with k vertices in row k. Each vertex is connected to the neighbors in the same row and up to two vertices in each of the neighboring rows. The graph has 6 vertices and 9 edges altogether. %D A182788 Burkard Polster and Marty Ross, Math Goes to the Movies, The Johns Hopkins University Press, Baltimore, 2013, ยง1.10 Mathematics: Graph Theory 3, pp. 16-17. %H A182788 Alois P. Heinz, <a href="/A182788/b182788.txt">Table of n, a(n) for n = 0..1000</a> %H A182788 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chromatic_polynomial">Chromatic polynomial</a> %H A182788 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_graph#Other_kinds">Triangular grid graph</a> %H A182788 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1). %F A182788 a(n) = n*(n-1)*(n-2)^4. %F A182788 G.f.: 6*x^3*(1 + 25*x + 67*x^2 + 27*x^3) / (1-x)^7. %F A182788 a(0)=0, a(1)=0, a(2)=0, a(3)=6, a(4)=192, a(5)=1620, a(6)=7680, a(n) = 7*a(n-1) -21*a(n-2) +35*a(n-3) -35*a(n-4) +21*a(n-5) -7*a(n-6) +a(n-7). - _Harvey P. Dale_, Dec 10 2011 %p A182788 a:= n-> n*(n-1)*(n-2)^4: seq(a(n), n=0..30); %t A182788 Table[n(n-1)(n-2)^4,{n,0,30}] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{0,0,0,6,192,1620,7680},30] (* _Harvey P. Dale_, Dec 10 2011 *) %o A182788 (PARI) a(n)=n*(n-1)*(n-2)^4 \\ _Charles R Greathouse IV_, Jun 22 2016 %Y A182788 3rd column of A182797. %Y A182788 Cf. A178435, A182798, A182789, A182790, A182791, A182792, A182793, A182794, A182795, A182796. %K A182788 nonn,easy %O A182788 0,4 %A A182788 _Alois P. Heinz_, Dec 02 2010