cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182803 Number of 8-core partitions of n.

This page as a plain text file.
%I A182803 #16 May 21 2018 10:44:28
%S A182803 1,1,2,3,5,7,11,15,14,22,26,32,37,45,47,56,75,77,89,102,111,124,142,
%T A182803 147,167,182,196,210,242,249,288,322,299,349,382,393,423,467,453,499,
%U A182803 570,563,602,669,649,716,772,754,843,907,884
%N A182803 Number of 8-core partitions of n.
%H A182803 Alois P. Heinz, <a href="/A182803/b182803.txt">Table of n, a(n) for n = 0..10000</a>
%F A182803 G.f.: Product_{i>=1} (1-x^(8*i))^8/(1-x^i).
%F A182803 Euler transform of period 8 sequence [1,1,1,1,1,1,1,-7, .. ].
%p A182803 with(numtheory): A:= proc(n, t) option remember; local d, j; `if`(n=0, 1, add(add(`if`(t=0 or irem(d, t)=0, d-d*t, d), d=divisors(j)) *A(n-j, t), j=1..n)/n) end: seq(A(n,8), n=0..50);
%t A182803 A[n_, t_] := A[n, t] = If[n == 0, 1, Sum[Sum[If[t == 0 || Mod[d, t] == 0, d - d*t, d], {d, Divisors[j]}]*A[n - j, t], {j, 1, n}]/n];
%t A182803 Table[A[n, 8], {n, 0, 50}] (* _Jean-François Alcover_, May 21 2018, translated form Maple *)
%Y A182803 8th column of A175595.
%K A182803 nonn
%O A182803 0,3
%A A182803 _Alois P. Heinz_, Dec 03 2010