cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182822 Exponential Riordan array, defining orthogonal polynomials related to permutations without double falls.

This page as a plain text file.
%I A182822 #35 Mar 28 2022 10:55:49
%S A182822 1,1,1,2,3,1,5,12,6,1,17,53,39,10,1,70,279,260,95,15,1,349,1668,1914,
%T A182822 880,195,21,1,2017,11341,15330,8554,2380,357,28,1,13358,86019,134317,
%U A182822 87626,29379,5530,602,36,1,99377,722664,1277604,954885,372771,84231,11508,954,45,1,822041,6655121,13149441,11061480,4924515,1292445,211533,22020,1440,55,1
%N A182822 Exponential Riordan array, defining orthogonal polynomials related to permutations without double falls.
%C A182822 Inverse is the coefficient array for the orthogonal polynomials P(0,x) = 1, P(1,x) = x-1, P(n,x) = (x-n)*P(n-1,x) - (n-1)^2*P(n-2,x). Inverse is A182823. First column is A049774.
%H A182822 Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Barry2/barry281.html">Constructing Exponential Riordan Arrays from Their A and Z Sequences</a>, Journal of Integer Sequences, 17 (2014), #14.2.6.
%F A182822 Exponential Riordan array [exp(x/2)/(cos(sqrt(3)x/2)-sin(sqrt(3)x/2)/sqrt(3)), 2*sin(sqrt(3)x/2)/(sqrt(3)*cos(sqrt(3)x/2)-sin(sqrt(3)x/2))].
%F A182822 From _Werner Schulte_, Mar 27 2022: (Start)
%F A182822 T(n,k) = T(n-1,k-1) + (k+1) * T(n-1,k) + (k+1)^2 * T(n-1,k+1) for n > 0 with initial values T(0,0) = 1 and T(i,j) = 0 if j < 0 or i < j (see the Sage program below).
%F A182822 The row polynomials p(n,x) = Sum_{k=0..n} T(n,k) * x^k satisfy recurrence equation p(n,x) = (1+x) * (p(n-1,x) + p'(n-1,x)) + x * p"(n-1,x) for n > 0 with initial value p(0,x) = 1 where p' and p" are first and second derivative of p. (End)
%e A182822 Triangle begins
%e A182822       1;
%e A182822       1,     1;
%e A182822       2,     3,      1;
%e A182822       5,    12,      6,     1;
%e A182822      17,    53,     39,    10,     1;
%e A182822      70,   279,    260,    95,    15,    1;
%e A182822     349,  1668,   1914,   880,   195,   21,   1;
%e A182822    2017, 11341,  15330,  8554,  2380,  357,  28,  1;
%e A182822   13358, 86019, 134317, 87626, 29379, 5530, 602, 36, 1;
%e A182822 Production matrix is
%e A182822   1, 1;
%e A182822   1, 2, 1;
%e A182822   0, 4, 3,  1;
%e A182822   0, 0, 9,  4,  1;
%e A182822   0, 0, 0, 16,  5,  1;
%e A182822   0, 0, 0,  0, 25,  6,  1;
%e A182822   0, 0, 0,  0,  0, 36,  7,  1;
%e A182822   0, 0, 0,  0,  0,  0, 49,  8,  1;
%e A182822   0, 0, 0,  0,  0,  0,  0, 64,  9,   1;
%e A182822   0, 0, 0,  0,  0,  0,  0,  0, 81,  10,  1;
%e A182822   0, 0, 0,  0,  0,  0,  0,  0,  0, 100, 11, 1;
%t A182822 dim = 11; M[n_, n_] = 1; M[n_ /; 0 <= n <= dim-1, k_ /; 0 <= k <= dim-1] := M[n, k] = M[n-1, k-1] + (k+1)*M[n-1, k] + (k+1)^2*M[n-1, k+1]; M[_, _] = 0;
%t A182822 Table[M[n, k], {n, 0, dim-1}, {k, 0, n}] (* _Jean-François Alcover_, Jun 18 2019 *)
%o A182822 (Sage)
%o A182822 def A182822_triangle(dim):
%o A182822     T = matrix(ZZ,dim,dim)
%o A182822     for n in (0..dim-1): T[n,n] = 1
%o A182822     for n in (1..dim-1):
%o A182822         for k in (0..n-1):
%o A182822             T[n,k] = T[n-1,k-1]+(k+1)*T[n-1,k]+(k+1)^2*T[n-1,k+1]
%o A182822     return T
%o A182822 A182822_triangle(9) # _Peter Luschny_, Sep 19 2012
%K A182822 nonn,easy,tabl
%O A182822 0,4
%A A182822 _Paul Barry_, Dec 05 2010