A182826 Coefficient array for orthogonal polynomials p(n,x)=(x-(2n-1))*p(n-1,x)-(2n-2)^2*p(n-2,x), p(0,x)=1,p(1,x)=x-1.
1, -1, 1, -1, -4, 1, 21, 3, -9, 1, -111, 144, 30, -16, 1, -345, -1599, 450, 110, -25, 1, 14895, 2844, -9549, 840, 285, -36, 1, -143955, 208179, 62181, -36309, 735, 609, -49, 1, -760095, -3824064, 1147068, 442176, -103194, -1344, 1148, -64, 1, 49774095, 10955169, -39242556, 2925180, 2008314, -236250, -8316, 1980, -81, 1, -699437025, 1080622620, 384913701, -238086000
Offset: 0
Examples
Triangle begins 1, -1, 1, -1, -4, 1, 21, 3, -9, 1, -111, 144, 30, -16, 1, -345, -1599, 450, 110, -25, 1, 14895, 2844, -9549, 840, 285, -36, 1, -143955, 208179, 62181, -36309, 735, 609, -49, 1, -760095, -3824064, 1147068, 442176, -103194, -1344, 1148, -64, 1
Programs
-
Mathematica
(* The function RiordanArray is defined in A256893. *) RiordanArray[1/Sqrt[1 + 2# + 4#^2]&, ArcTan[Sqrt[3] #/(1 + #)]/Sqrt[3]&, 10, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
Formula
Exponential Riordan array [1/sqrt(1+2x+4x^2), arctan(sqrt(3)*x/(1+x))/sqrt(3)].
Comments