A182846 Joint-rank array of the numbers j*(i-1+r), where r=sqrt(2), i>=1, j>=1, by antidiagonals.
1, 3, 2, 5, 7, 4, 9, 13, 11, 6, 12, 19, 21, 17, 8, 16, 26, 32, 30, 23, 10, 20, 35, 44, 46, 39, 29, 14, 24, 42, 55, 61, 59, 50, 36, 15, 28, 51, 67, 77, 81, 75, 62, 41, 18, 33, 60, 82, 95, 102, 100, 90, 72, 49, 22, 38, 69, 93, 113, 125, 128, 120, 106, 84, 56, 25, 43
Offset: 1
Examples
Northwest corner: 1....3....5....9...12... 2....7...13...19...26... 4...11...21...32...44... 6...17...30...46...61... The numbers j*(i-1+sqrt(2)), approximately: (for i=1) 1.41, 2.83, 4.24,... (for i=2) 2.41, 4.83, 7.24,... (for i=3) 3.41, 6.83, 10.24,... Replacing each by its rank gives 1....3....5 2....7...13 4...ll...21
Programs
-
Mathematica
r=Sqrt[2]; f[i_,j_]:=Sum[Floor[j*(i-1+r)/(k-1+r)],{k,1,1+r+j(i-1+r)}]; TableForm[Table[f[i,j],{i,1,10},{j,1,10}]] (*A182846*)
Formula
T(i,j)=SUM{floor(j*(i-1+r)/(k-1+r)): r=sqrt(2), k>=1} for i>=1, j>=1.
Comments