This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182879 #35 Feb 13 2024 13:49:50 %S A182879 0,1,3,11,33,96,278,787,2205,6133,16941,46554,127390,347331,944121, %T A182879 2559607,6923529,18690138,50364988,135506485,364063815,976880631, %U A182879 2618206923,7009868646,18749876418,50107633501,133800148323,357012426677,951936494055 %N A182879 The sum of the lengths of all weighted lattice paths in L_n. %C A182879 L_n is the set of lattice paths of weight n that start at (0,0) and end on the horizontal axis and whose steps are of the following four kinds: a (1,0)-step with weight 1, a (1,0)-step with weight 2, a (1,1)-step with weight 2, and a (1,-1)-step with weight 1. The weight of a path is the sum of the weights of its steps. %H A182879 G. C. Greubel, <a href="/A182879/b182879.txt">Table of n, a(n) for n = 0..1000</a> %H A182879 Jean-Luc Baril, Nathanaël Hassler, Sergey Kirgizov, and José L. Ramírez, <a href="https://arxiv.org/abs/2402.04851">Grand zigzag knight's paths</a>, arXiv:2402.04851 [math.CO], 2024. %H A182879 Miklós Bóna and Arnold Knopfmacher, <a href="http://dx.doi.org/10.1007/s00026-010-0060-7">On the probability that certain compositions have the same number of parts</a>, Ann. Comb., 14 (2010), 291-306. %H A182879 Emanuele Munarini and Norma Zagaglia Salvi, <a href="http://dx.doi.org/10.1016/S0012-365X(02)00378-3">On the Rank Polynomial of the Lattice of Order Ideals of Fences and Crowns</a>, Discrete Mathematics 259 (2002), 163-177. %F A182879 a(n) = Sum_{k=0..n} k*binomial(k,n-k)^2. %F A182879 G.f.: z*(1+2*z^2-z^3)/((1-3*z+z^2)*(1+z+z^2))^(3/2). %F A182879 a(n) ~ sqrt(20 + 9*sqrt(5)) * ((3 + sqrt(5))/2)^n * sqrt(n) / (10*sqrt(Pi)). - _Vaclav Kotesovec_, Mar 06 2016 %F A182879 Conjecture: (n-1)*(310*n-781)*a(n) + (-882*n^2+3845*n-3679)*a(n-1) + (214*n^2-2903*n+3751)*a(n-2) + (-358*n^2-459*n+1955)*a(n-3) + (834*n^2-3631*n+4065)*a(n-4) - (262*n-663)*(n-3)*a(n-5) = 0. - _R. J. Mathar_, Jun 14 2016 %F A182879 Recurrence (of order 4): (n-1)*(2*n-5)*(2*n^2 - 15*n + 24)*a(n) = 2*(n-3)*(4*n^3 - 30*n^2 + 52*n - 13)*a(n-1) + (4*n^4 - 40*n^3 + 133*n^2 - 201*n + 96)*a(n-2) + 2*(4*n^4 - 38*n^3 + 110*n^2 - 126*n + 51)*a(n-3) - (n-2)*(2*n-3)*(2*n^2 - 11*n + 11)*a(n-4). - _Vaclav Kotesovec_, Sep 23 2017 %F A182879 a(n) ~ phi^(2*n + 3) * sqrt(n) / (2 * 5^(3/4) * sqrt(Pi)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - _Vaclav Kotesovec_, Sep 23 2017 %e A182879 a(3)=11. Indeed, denoting by h (H) the (1,0)-step of weight 1 (2), and u=(1,1), d=(1,-1), there are five paths of weight 3: hhh, hH, Hh, ud, and du; their lengths are 3, 2, 2, 2,and 2, respectively. %p A182879 a:=n->sum(k*binomial(k,n-k)^2,k=0..n): seq(a(n),n=0..28); %t A182879 CoefficientList[Series[x*(1+2*x^2-x^3)/((1-3*x+x^2)*(1+x+x^2))^(3/2), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 06 2016 *) %o A182879 (PARI) z='z+O('z^50); concat([0], Vec(z*(1+2*z^2-z^3)/((1-3*z+z^2)*(1+z+z^2))^(3/2))) \\ _G. C. Greubel_, Mar 25 2017 %Y A182879 Cf. A182878. %K A182879 nonn %O A182879 0,3 %A A182879 _Emeric Deutsch_, Dec 11 2010