This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182883 #34 Apr 23 2025 10:46:46 %S A182883 1,0,1,2,1,6,7,12,31,40,91,170,281,602,1051,1988,3907,7044,13735, %T A182883 25962,48643,94094,177145,338184,647791,1228812,2356927,4500678, %U A182883 8595913,16486966,31521543,60419872,115870879,222045160,426275647,818054654 %N A182883 Number of weighted lattice paths of weight n having no (1,0)-steps of weight 1. %C A182883 L_n is the set of lattice paths of weight n that start at (0,0) end on the horizontal axis and whose steps are of the following four kinds: an (1,0)-step with weight 1; an (1,0)-step with weight 2; a (1,1)-step with weight 2; a (1,-1)-step with weight 1. The weight of a path is the sum of the weights of its steps. %C A182883 Diagonal of the rational function 1 / (1 - x^3 - y^3 - (x*y)^2). - _Ilya Gutkovskiy_, Apr 23 2025 %D A182883 M. Bona and A. Knopfmacher, On the probability that certain compositions have the same number of parts, Ann. Comb., 14 (2010), 291-306. %D A182883 E. Munarini, N. Zagaglia Salvi, On the rank polynomial of the lattice of order ideals of fences and crowns, Discrete Mathematics 259 (2002), 163-177. %F A182883 a(n) = A182882(n,0). %F A182883 G.f.: 1/sqrt(1-2*z^2+z^4-4*z^3). %F A182883 It appears that a(n) = Sum_{k = 0..floor(n/2)} binomial(n-k,k)*binomial(k,n-2*k): this gives correct values for a(0) through a(35). If true, then sequence equals antidiagonal sums of triangle A105868. - _Peter Bala_, Mar 06 2013 %F A182883 D-finite n*a(n) = (2*n - 2)*a(n-2) + (4*n - 6)*a(n-3) - (n - 2)*a(n-4), follows easily by differentiating the o.g.f. Maple's sumrecursion command verifies that Sum_{k = 0..floor(n/2)} binomial(n-k,k)*binomial(k,n-2*k) satisfies the same recurrence with the same initial conditions thus proving the above conjecture. - _Peter Bala_, Feb 07 2017 %F A182883 a(n) = Sum_{k=0..n} (-1)^k*binomial(n, k)*hypergeom([-k, k-n, k-n], [1, -n], -1). - _Peter Luschny_, Feb 13 2018 %e A182883 a(3)=2. Indeed, denoting by h (H) the (1,0)-step of weight 1 (2), and u=(1,1), d=(1,-1), the five paths of weight 3 are ud, du, hH, Hh, and hhh; two of them, namely ud and du, contain no h steps. %p A182883 G:=1/sqrt(1-2*z^2+z^4-4*z^3): Gser:=series(G,z=0,40): seq(coeff(Gser,z,n), n=0..35); %p A182883 # Alternatively (after Bala): %p A182883 seq(add(binomial(n-k,k)*binomial(k,n-2*k), k=ceil(n/3)...floor(n/2)),n=0..35); # _Peter Luschny_, Feb 07 2017 %p A182883 # With natural summation bound: %p A182883 a := n -> add((-1)^k*binomial(n,k)*hypergeom([-k,k-n,k-n], [1,-n], -1), k=0..n): seq(simplify(a(n)), n=0..35); # _Peter Luschny_, Feb 13 2018 %t A182883 CoefficientList[Series[1/Sqrt[1-2x^2+x^4-4x^3],{x,0,40}],x] (* _Harvey P. Dale_, Oct 16 2011 *) %Y A182883 Cf. A182882. A105868. %K A182883 nonn,easy %O A182883 0,4 %A A182883 _Emeric Deutsch_, Dec 11 2010