This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182899 #15 Jul 22 2022 12:09:22 %S A182899 0,0,0,2,6,18,54,152,422,1160,3156,8534,22968,61578,164602,438930, %T A182899 1168120,3103540,8234122,21820098,57762774,152774358,403750258, %U A182899 1066291206,2814322014,7423962336,19574314938,51587866820,135905559330,357908155044 %N A182899 Number of returns to the horizontal axis (both from above and below) in all weighted lattice paths in L_n. %C A182899 The members of L_n are paths of weight n that start at (0,0) , end on the horizontal axis and whose steps are of the following four kinds: an (1,0)-step with weight 1, an (1,0)-step with weight 2, a (1,1)-step with weight 2, and a (1,-1)-step with weight 1. The weight of a path is the sum of the weights of its steps. %H A182899 M. Bona and A. Knopfmacher, <a href="http://dx.doi.org/10.1007/s00026-010-0060-7">On the probability that certain compositions have the same number of parts</a>, Ann. Comb., 14 (2010), 291-306. %H A182899 E. Munarini and N. Zagaglia Salvi, <a href="http://dx.doi.org/10.1016/S0012-365X(02)00378-3">On the Rank Polynomial of the Lattice of Order Ideals of Fences and Crowns</a>, Discrete Mathematics 259 (2002), 163-177. %F A182899 a(n) = Sum_{k>=0} k*A182898(n,k). %F A182899 a(n) = 2*A182897(n). %F A182899 G.f.: 2*z^3*c/((1+z+z^2)*(1-3*z+z^2)), where c satisfies c = 1+z*c+z^2*c+z^3*c^2. %F A182899 Conjecture D-finite with recurrence n*a(n) +(-4*n+3)*a(n-1) +(2*n-3)*a(n-2) +11*(n-3)*a(n-4) +(2*n-9)*a(n-6) +(-4*n+21)*a(n-7) +(n-6)*a(n-8)=0. - _R. J. Mathar_, Jul 22 2022 %e A182899 a(3)=2 because, denoting by h (H) the (1,0)-step of weight 1 (2), and u=(1,1), d=(1,-1), the five paths of weight 3 are ud, du, hH, Hh, and hhh; they contain 1+1+0+0+0=1 returns to the horizontal axis. %p A182899 eq := c = 1+z*c+z^2*c+z^3*c^2: c := RootOf(eq, c): G := 2*z^3*c/((1+z+z^2)*(1-3*z+z^2)): Gser := series(G, z = 0, 32): seq(coeff(Gser, z, n), n = 0 .. 29); %Y A182899 Cf. A182896, A182897, A182898. %K A182899 nonn %O A182899 0,4 %A A182899 _Emeric Deutsch_, Dec 13 2010