A182902 Number of valleys in all weighted lattice paths in B(n).
0, 0, 0, 0, 0, 0, 1, 4, 14, 45, 135, 391, 1105, 3067, 8404, 22806, 61428, 164495, 438459, 1164363, 3082717, 8141422, 21457255, 56455195, 148323305, 389213825, 1020283146, 2672225692, 6993600748, 18291536552, 47814575243, 124929304664, 326280023426
Offset: 0
Examples
a(7) = 4. Indeed, denoting by h (H) the (1,0)-step of weight 1 (2), and U = (1,1), D = (1,-1), among the 82 paths in B(7) only hUDUD, UDUDh, UDUhD, and UhDUD have valleys (1 in each).
References
- M. Bona and A. Knopfmacher, On the probability that certain compositions have the same number of parts, Ann. Comb., 14 (2010), 291-306.
Crossrefs
Programs
-
Maple
eq := g = 1+z*g+z^2*g+z^3*g^2: g := RootOf(eq, g): gser := series(z^6*g^4/(1-z^3*g^2), z = 0, 35): seq(coeff(gser, z, n), n = 0 .. 32);
Formula
a(n) = Sum(k*A182900(n,k), k>=0).
G.f.: G:=z^6*g^4/(1-z^3*g^2), where g=g(z) satisfies g=1+zg+z^2*g+z^3*g^2.
D-finite with recurrence -3*(n+3)*(n-6)*a(n) +(n+1)*(7*n-34)*a(n-1) +2*(5*n+26)*a(n-2) +(7*n^2-39*n+16)*a(n-3) +4*(-n^2+5*n+2)*a(n-4) +(3*n^2-29*n+64)*a(n-5) -(n-4)*(n-7)*a(n-6)=0. - R. J. Mathar, Jul 22 2022
Comments