cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182902 Number of valleys in all weighted lattice paths in B(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 4, 14, 45, 135, 391, 1105, 3067, 8404, 22806, 61428, 164495, 438459, 1164363, 3082717, 8141422, 21457255, 56455195, 148323305, 389213825, 1020283146, 2672225692, 6993600748, 18291536552, 47814575243, 124929304664, 326280023426
Offset: 0

Views

Author

Emeric Deutsch, Dec 15 2010

Keywords

Comments

The members of B(n) are paths of weight n that start at (0,0), end on but never go below the horizontal axis, and whose steps are of the following four kinds: an (1,0)-step with weight 1, an (1,0)-step with weight 2, a (1,1)-step with weight 2, and a (1,-1)-step with weight 1. The weight of a path is the sum of the weights of its steps. A valley is a (1,-1)-step followed by a (1,1)-step.

Examples

			a(7) = 4. Indeed, denoting by h (H) the (1,0)-step of weight 1 (2), and U = (1,1), D = (1,-1), among the 82 paths in B(7) only hUDUD, UDUDh, UDUhD, and UhDUD have valleys (1 in each).
		

References

  • M. Bona and A. Knopfmacher, On the probability that certain compositions have the same number of parts, Ann. Comb., 14 (2010), 291-306.

Crossrefs

Programs

  • Maple
    eq := g = 1+z*g+z^2*g+z^3*g^2: g := RootOf(eq, g): gser := series(z^6*g^4/(1-z^3*g^2), z = 0, 35): seq(coeff(gser, z, n), n = 0 .. 32);

Formula

a(n) = Sum(k*A182900(n,k), k>=0).
G.f.: G:=z^6*g^4/(1-z^3*g^2), where g=g(z) satisfies g=1+zg+z^2*g+z^3*g^2.
D-finite with recurrence -3*(n+3)*(n-6)*a(n) +(n+1)*(7*n-34)*a(n-1) +2*(5*n+26)*a(n-2) +(7*n^2-39*n+16)*a(n-3) +4*(-n^2+5*n+2)*a(n-4) +(3*n^2-29*n+64)*a(n-5) -(n-4)*(n-7)*a(n-6)=0. - R. J. Mathar, Jul 22 2022