A182907 Triangle read by rows: row n is the degree sequence (written in nondecreasing order) of the rooted tree with Matula-Goebel number n.
0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 4, 1, 1, 1, 2, 3, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 4, 1, 1, 1, 2, 2, 3, 1, 1, 1, 2, 2, 3, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 2, 4, 1, 1, 2, 2, 2, 2, 2
Offset: 1
Examples
Row 7 is 1,1,1,3 because the rooted tree with Matula-Goebel number 7 is the rooted tree Y. Row 32 is 1,1,1,1,1,5 because the rooted tree with Matula-Goebel number 32 is a star with 5 edges.
Links
- Emeric Deutsch, Tree statistics from Matula numbers, arXiv preprint arXiv:1111.4288 [math.CO], 2011.
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
Crossrefs
Cf. A061775.
Programs
-
Maple
with(numtheory): g := proc (n) local r, s: r := proc (n) options operator, arrow; op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then sort(expand(g(pi(n))+x^bigomega(pi(n))*(x-1)+x)) else sort(expand(g(r(n))+g(s(n))-x^bigomega(r(n))-x^bigomega(s(n))+x^bigomega(n))) end if end proc: S := proc (n) if n = 1 then 0 else seq(seq(j, i = 1 .. coeff(g(n), x, j)), j = 1 .. degree(g(n))) end if end proc: for n to 25 do S(n) end do; # yields sequence in triangular form
-
Mathematica
r[n_] := FactorInteger[n][[1, 1]]; s[n_] := n/r[n]; g[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, g[PrimePi[n]] + x^PrimeOmega[PrimePi[n]]*(x - 1) + x, True, g[r[n]] + g[s[n]] - x^PrimeOmega[r[n]] - x^PrimeOmega[s[n]] + x^PrimeOmega[n]]; S[n_] := If[n == 1, {0}, Table[t = Table[j, {i, 1, Coefficient[g[n], x, j]}]; If[t == {}, Nothing, t], {j, 1, Exponent[g[n], x]}]] // Flatten; Table[S[n], {n, 1, 25}] // Flatten (* Jean-François Alcover, Jun 20 2024, after Maple code *)
Formula
For a graph with degree sequence a,b,c,..., define the degree sequence polynomial to be x^a + x^b + x^c + ... . The degree sequence polynomial g(n)=g(n,x) of the rooted tree with Matula-Goebel number n can be obtained recursively in the following way: g(1)=1; if n=prime(t) (=the t-th prime), then g(n)=g(t)+x^G(t)*(x-1)+x; if n=r*s (r,s>=2), then g(n)=g(r)+g(s)-x^G(r)-x^G(s)+x^G(n); G(m) is the number of prime divisors of m counted with multiplicities. The Maple program, based on this recursive procedure, finds for an arbitrary n the polynomial g(n,x) and then extracts from this polynomial the degree sequence S(n).
Comments