A182909 Ranks of composite numbers when all prime powers p^n for n>=1 are jointly ranked.
3, 6, 7, 10, 14, 15, 18, 23, 27, 32, 41, 42, 44, 53, 68, 70, 78, 86, 91, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142
Offset: 1
Keywords
Examples
In the sequence A000961 (2,3,4,5,7,8,9,11,13,16,17,19,23,25,27,...) of prime powers p^n for n>=1, the composites 4,8,9,16,25,27,... occur with ranks 3,6,7,10,14,15...
Programs
-
Mathematica
T[i_,j_]:=Sum[Floor[j*Log[Prime[i]]/Log[Prime[h]]],{h,1,PrimePi[Prime[i]^j]}]; Complement[Range[200],Flatten[Table[T[i,j],{i,1,80},{j,1,1}]]]
Comments