A182910 Number of unitary prime divisors of the swinging factorial (A056040) n$ = n! / floor(n/2)!^2.
0, 0, 1, 2, 2, 3, 1, 2, 3, 3, 1, 2, 3, 4, 3, 3, 4, 5, 4, 5, 4, 6, 5, 6, 5, 5, 4, 4, 3, 4, 5, 6, 7, 8, 6, 6, 7, 8, 7, 7, 8, 9, 9, 10, 9, 7, 6, 7, 7, 7, 7, 8, 7, 8, 8, 10, 11, 13, 12, 13, 11, 12, 11, 10, 11, 13, 12, 13
Offset: 0
Keywords
Examples
16$ = 2*3*3*5*11*13. So 16$ has one non-unitary prime divisor and a(16) = 4.
Crossrefs
Cf. A056171.
Programs
-
Maple
UnitaryPrimeDivisor := proc(f,n) local k, F; F := f(n): add(`if`(igcd(iquo(F,k),k)=1,1,0),k=numtheory[factorset](F)) end; A056040 := n -> n!/iquo(n,2)!^2; A182910 := n -> UnitaryPrimeDivisor(A056040,n); seq(A182910(i), i=1..LEN);
-
Mathematica
Table[Function[m, If[m == 1, 0, Count[FactorInteger[m][[All, -1]], 1]]][n!/Floor[n/2]!^2], {n, 0, 67}] (* Michael De Vlieger, Aug 02 2017 *)
-
Python
from sympy import factorint, factorial def a056169(n): return 0 if n==1 else sum(1 for i in factorint(n).values() if i==1) def a056040(n): return factorial(n)//factorial(n//2)**2 def a(n): return a056169(a056040(n)) print([a(n) for n in range(68)]) # Indranil Ghosh, Aug 02 2017
Comments