A182911 Prime encoded sequence of generic integer partitions of n in the antilexicographic order of the partitions.
1, 2, 1, 1, 36, 1, 216, 900, 1, 1296, 5400, 44100, 27000, 7776, 32400, 264600, 5336100, 162000, 1323000, 46656, 194400, 810000, 1587600, 9261000, 32016600, 901800900, 972000, 7938000, 160083000, 279936, 1166400, 4860000, 9525600, 39690000, 55566000, 192099600, 1120581000
Offset: 0
Keywords
Examples
0: {} -> 1 1: {[1]} -> 2^1 = 2 2: {} -> 1 3: {} -> 1 4: {[22]} -> 2^2*3^2 = 36 5: {} -> 1 6: {[33],[222]} -> 2^3*3^3 = 216; 2^2*3^2*5^2 = 900 7: {} -> 1 8: {[44],[332],[2222]} -> 1296, 5400, 44100 9: {[333]} -> 27000
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..19200
- Peter Luschny, Integer partition trees, OEIS wiki.
Programs
-
Maple
a:= proc(n) local b, ll; b:= proc(n,i,l) local nl; nl:= nops(l); if n<0 then elif n=0 then ll:= ll, `if`(nl=0 or nl=1 and l[1]=1 or nl>1 and l[-1]<>1 and l[1]=l[2], mul(ithprime(t)^l[t], t=1..nl), NULL) elif i=0 then else b(n-i, i, [l[], i]), b(n, i-1, l) fi end; ll:= NULL; b(n,n,[]); `if`(ll=NULL,1,ll) end: seq(a(n), n=0..15);
Comments