cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182913 Denominators of an asymptotic series for the Gamma function (G. Nemes).

This page as a plain text file.
%I A182913 #10 Jun 02 2025 03:15:01
%S A182913 1,1,144,12960,207360,2612736,9405849600,18811699200,1083553873920,
%T A182913 4022693756928000,300361133850624000,210853515963138048000,
%U A182913 151814531493459394560000,151814531493459394560000,21861292535058152816640000
%N A182913 Denominators of an asymptotic series for the Gamma function (G. Nemes).
%C A182913 G_n = A182912(n)/A182913(n). These rational numbers provide the coefficients for an asymptotic expansion of the Gamma function.
%D A182913 G. Nemes, More Accurate Approximations for the Gamma Function,
%D A182913 Thai Journal of Mathematics Volume 9(1) (2011), 21-28.
%H A182913 Peter Luschny, <a href="http://www.luschny.de/math/factorial/approx/SimpleCases.html">Approximation Formulas for the Factorial Function.</a>
%F A182913 Gamma(x+1) ~ x^x e^(-x) sqrt(2Pi (x+1/6)) Sum_{n>=0} G_n / (x+1/4)^n.
%e A182913 G_0 = 1, G_1 = 0, G_2 = 1/144, G_3 = -1/12960.
%p A182913 # See A182912 for G(n).
%p A182913 A182913 := n -> denom(G(n)); seq(A182913(i),i=0..15);
%t A182913 G[n_] := G[n] = Module[{j, J}, J[k_] := J[k] = Module[{j}, If[k == 0, 1, (J[k-1]/k - Sum[J[k-j]*J[j]/(j+1), {j, 1, k-1}])/(1+1/(k+1))]]; Sum[J[2*j]*2^j*6^(j-n)*Gamma[1/2+j]/(Gamma[n-j+1]*Gamma[1/2+j-n]), {j, 0, n}] - Sum[G[j]*(-4)^(j-n)*Gamma[n]/(Gamma[n-j+1]*Gamma[j]), {j, 1, n-1}]]; A182913[n_] := Denominator[G[n]]; Table[A182913[i], {i, 0, 15}] (* _Jean-François Alcover_, Jan 06 2014, translated from Maple *)
%Y A182913 Cf. A001163, A001164, A182912.
%K A182913 nonn,frac
%O A182913 0,3
%A A182913 _Peter Luschny_, Feb 09 2011