cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182914 Numerators of an asymptotic series for the factorial function.

This page as a plain text file.
%I A182914 #11 Sep 23 2016 12:25:18
%S A182914 1,1,3,18029,6272051,2399400481893,2360892742128702160071689,
%T A182914 1225408074190853330503870473269754327221,
%U A182914 2111833643474196598745616885237164204175699342833563922769,61021653911740304085897627617156000912701780196503645897652921180865489827779803343
%N A182914 Numerators of an asymptotic series for the factorial function.
%C A182914 C_n = A182914(n)/A182915(n). These rational numbers provide the coefficients for an asymptotic expansion of the factorial function.
%H A182914 L. Feng and W. Wang, <a href="http://dx.doi.org/10.1007/s11075-012-9671-x">Two families of approximations for the gamma function</a>, Numerical Algorithms, Springer 2012.
%H A182914 Peter Luschny, <a href="https://oeis.org/wiki/User:Peter_Luschny/FactorialFunction">Approximations to the factorial function</a>.
%H A182914 W. Wang, <a href="http://dx.doi.org/10.1016/j.jnt.2015.12.016">Unified approaches to the approximations of the gamma function</a>, J. Number Theory (2016).
%F A182914 Let N = n + 1/2 and p = N^2*C_0/(N+C_1/(N+C_2/(N+C_3/(N+C_4/N)...))), then
%F A182914 n! ~ sqrt(2Pi) (p/e)^N.
%e A182914 C_0 = 1, C_1 = 1/24, C_2 = 3/80, C_3 = 18029/45360, C_4 = 6272051/14869008.
%Y A182914 Cf. A182915 (denominators).
%K A182914 nonn,frac
%O A182914 0,3
%A A182914 _Peter Luschny_, Mar 08 2011