cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182916 Numerators of an asymptotic series for the factorial function (S. Wehmeier).

This page as a plain text file.
%I A182916 #13 Feb 16 2025 08:33:13
%S A182916 1,1,-31,-139,9871,324179,-8225671,-69685339,1674981058019,
%T A182916 24279707153761,-25107254122618741,-1539511255447387949,
%U A182916 181685125700898353671,368622611536873334281,-538867967772767903436298889
%N A182916 Numerators of an asymptotic series for the factorial function (S. Wehmeier).
%C A182916 W_n = A182916(n)/A182917(n). These rational numbers provide the coefficients for an asymptotic expansion of the factorial function. It is a generalization of Gosper's approximation.
%H A182916 Peter Luschny, Approximations to the factorial function, <a href="http://oeis.org/wiki/User:Peter_Luschny/FactorialFunction">Factorial Function</a>.
%H A182916 W. Wang, <a href="http://dx.doi.org/10.1016/j.jnt.2015.12.016">Unified approaches to the approximations of the gamma function</a>, J. Number Theory (2016).
%H A182916 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/StirlingsApproximation.html">Stirling's Approximation</a>.
%F A182916 Let A = Sum_{k>=0} W[k]/n^k, then n! ~ sqrt(2Pi*(n+A))*(n/e)^n.
%e A182916 W_0 = 1/6, W_1 = 1/72, W_2 = -31/6480, W_3 = -139/155520, W_4 = 9871/6531840.
%Y A182916 Cf. A182917.
%K A182916 sign,frac
%O A182916 0,3
%A A182916 _Peter Luschny_, Mar 09 2011