cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182917 Denominators of an asymptotic series for the factorial function (S. Wehmeier).

This page as a plain text file.
%I A182917 #10 Feb 16 2025 08:33:13
%S A182917 6,72,6480,155520,6531840,1175731200,7054387200,338610585600,
%T A182917 1005673439232000,84476568895488000,6589172373848064000,
%U A182917 2372102054585303040000,14232612327511818240000,170791347930141818880000,9145876681659094401024000000
%N A182917 Denominators of an asymptotic series for the factorial function (S. Wehmeier).
%C A182917 W_n = A182916(n)/A182917(n). These rational numbers provide the coefficients for an asymptotic expansion of the factorial function. It is a generalization of Gosper's approximation.
%H A182917 Peter Luschny, Approximations to the factorial function, <a href="https://oeis.org/wiki/User:Peter_Luschny/FactorialFunction">Factorial Function</a>.
%H A182917 W. Wang, <a href="http://dx.doi.org/10.1016/j.jnt.2015.12.016">Unified approaches to the approximations of the gamma function</a>, J. Number Theory (2016).
%H A182917 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/StirlingsApproximation.html">Stirling's Approximation</a>.
%F A182917 Let A = Sum_{k>=0} W[k]/n^k, then n! ~ sqrt(2Pi*(n+A))*(n/e)^n.
%e A182917 W_0 = 1/6, W_1 = 1/72, W_2 = -31/6480, W_3 = -139/155520, W_4 = 9871/6531840.
%Y A182917 Cf. A182916.
%K A182917 nonn,frac
%O A182917 0,1
%A A182917 _Peter Luschny_, Mar 09 2011