This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182917 #10 Feb 16 2025 08:33:13 %S A182917 6,72,6480,155520,6531840,1175731200,7054387200,338610585600, %T A182917 1005673439232000,84476568895488000,6589172373848064000, %U A182917 2372102054585303040000,14232612327511818240000,170791347930141818880000,9145876681659094401024000000 %N A182917 Denominators of an asymptotic series for the factorial function (S. Wehmeier). %C A182917 W_n = A182916(n)/A182917(n). These rational numbers provide the coefficients for an asymptotic expansion of the factorial function. It is a generalization of Gosper's approximation. %H A182917 Peter Luschny, Approximations to the factorial function, <a href="https://oeis.org/wiki/User:Peter_Luschny/FactorialFunction">Factorial Function</a>. %H A182917 W. Wang, <a href="http://dx.doi.org/10.1016/j.jnt.2015.12.016">Unified approaches to the approximations of the gamma function</a>, J. Number Theory (2016). %H A182917 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/StirlingsApproximation.html">Stirling's Approximation</a>. %F A182917 Let A = Sum_{k>=0} W[k]/n^k, then n! ~ sqrt(2Pi*(n+A))*(n/e)^n. %e A182917 W_0 = 1/6, W_1 = 1/72, W_2 = -31/6480, W_3 = -139/155520, W_4 = 9871/6531840. %Y A182917 Cf. A182916. %K A182917 nonn,frac %O A182917 0,1 %A A182917 _Peter Luschny_, Mar 09 2011