A182918 Denominators of the swinging Bernoulli number b_n.
1, 2, 6, 1, 120, 1, 1512, 1, 17280, 1, 190080, 1, 1415232000, 1, 21772800, 1, 829108224000, 1, 105082151731200, 1, 4345502515200000, 1, 19989311569920000, 1, 626378114550988800000, 1, 17896517558599680000, 1, 944578196742891110400000
Offset: 0
Examples
1, 1/2, 1/6, 0, 1/120, 0, 1/1512, 0, 1/17280, 0, 1/190080, ..
Links
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
Crossrefs
Cf. A120082.
Programs
-
Maple
swbern:= proc(n) local swfact; swfact := n -> n!/iquo(n,2)!^2; if n=0 then 1 elif n=1 then 1/2 else if n mod 2 = 1 then 0 else 2*Zeta(n)*swfact(n)/(2*Pi)^n fi fi end: Abs_A120082 := n -> numer(swbern(n)); A182918 := n -> denom(swbern(n)); seq(A182918(i),i=0..20);
-
Mathematica
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[1] = 2; a[?OddQ] = 1; a[n] := 2*Zeta[n]*sf[n]/(2*Pi)^n // Denominator; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Jul 26 2013 *)
Comments