cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182918 Denominators of the swinging Bernoulli number b_n.

Original entry on oeis.org

1, 2, 6, 1, 120, 1, 1512, 1, 17280, 1, 190080, 1, 1415232000, 1, 21772800, 1, 829108224000, 1, 105082151731200, 1, 4345502515200000, 1, 19989311569920000, 1, 626378114550988800000, 1, 17896517558599680000, 1, 944578196742891110400000
Offset: 0

Views

Author

Peter Luschny, Feb 03 2011

Keywords

Comments

Let zeta(n) denote the Riemann zeta function, B_n the Bernoulli numbers and let [n even] be 1 if n is even, 0 otherwise.
Then 2 zeta(n) [n even] = (2 Pi)^n | B_n | / n! for n >= 2.
Replacing in this formula the factorial of n by the swinging factorial of n (A056040) defines the 'swinging Bernoulli number' b_n.
Then 2 zeta(n) [n even] = (2 Pi)^n b_n / n$ for n >= 2.
Let additionally b_0 = 1 and b_1 = 1/2. The b_n are rational numbers like the Bernoulli numbers; unlike the Bernoulli numbers the swinging Bernoulli numbers are unsigned, bounded in the interval [0,1] and approach 0 for n -> infinity. The numerators of the swinging Bernoulli numbers b_n are abs(A120082(n)).

Examples

			1, 1/2, 1/6, 0, 1/120, 0, 1/1512, 0, 1/17280, 0, 1/190080, ..
		

Crossrefs

Cf. A120082.

Programs

  • Maple
    swbern:= proc(n) local swfact;
    swfact := n -> n!/iquo(n,2)!^2;
    if n=0 then 1 elif n=1 then 1/2 else
       if n mod 2 = 1 then 0
       else 2*Zeta(n)*swfact(n)/(2*Pi)^n fi
    fi end:
    Abs_A120082 := n -> numer(swbern(n));
    A182918 := n -> denom(swbern(n));
    seq(A182918(i),i=0..20);
  • Mathematica
    sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[1] = 2; a[?OddQ] = 1; a[n] := 2*Zeta[n]*sf[n]/(2*Pi)^n // Denominator; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Jul 26 2013 *)