cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182924 Generalized vertical Bell numbers of order 4.

Original entry on oeis.org

1, 52, 43833, 149670844, 1346634725665, 25571928251231076, 893591647147188285577, 52327970757667659912764908, 4796836032234830356783078467969, 653510798275634770675047022800897940, 127014654376520087360456517007106313763801
Offset: 0

Views

Author

Peter Luschny, Mar 28 2011

Keywords

Comments

The name "generalized 'vertical' Bell numbers" is used to distinguish them from the generalized (horizontal) Bell numbers with reference to the square array representation of the generalized Bell numbers as given in A090210. a(n) is column 5 in this representation. The order is the parameter M in Penson et al., p. 6, eq. 29.
Apparently a(n) = A157280(n+1) for 0 <= n <= 8. - Georg Fischer, Oct 24 2018 (and true considering the hypergeometric comment in A157280, R. J. Mathar, Apr 23 2024).

Crossrefs

Programs

  • Maple
    A182924 := proc(n) exp(-x)*GAMMA(n+1)^4*hypergeom([n+1,n+1,n+1,n+1],[1,1,1,1],x): simplify(subs(x=1, %)) end;
    seq(A182924(i),i=0..10);
  • Mathematica
    fallfac[n_, k_] := Pochhammer[n-k+1, k]; f[m_][n_, k_] := (-1)^k/k!* Sum[(-1)^p*Binomial[k, p]*fallfac[p, m]^n, {p, m, k}]; a[n_] := Sum[f[n][5, k], {k, n, 5*n}]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Sep 05 2012 *)

Formula

a(n) = exp(-1)*Gamma(n+1)^4*[4F4]([n+1,n+1,n+1,n+1], [1,1,1,1] | 1); here [4F4] is the generalized hypergeometric function of type 4F4.
Let B_{n}(x) = sum_{j>=0}(exp(j!/(j-n)!*x-1)/j!) then a(n) = 5! [x^5] taylor(B_{n}(x)), where [x^5] denotes the coefficient of x^5 in the Taylor series for B_{n}(x).