A182925 Generalized vertical Bell numbers of order 3.
1, 15, 1657, 513559, 326922081, 363303011071, 637056434385865, 1644720885001919607, 5943555582476814384769, 28924444943026683877502191, 183866199607767992029159792281, 1489437787210535537087417039489815
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..168
- P. Blasiak and P. Flajolet, Combinatorial models of creation-annihilation, (2010).
- K. A. Penson, P. Blasiak, A. Horzela, A. I. Solomon and G. H. E. Duchamp,
- Laguerre-type derivatives: Dobinski relations and combinatorial identities, J. Math. Phys. 50, 083512 (2009).
Programs
-
Maple
A182925 := proc(n) exp(-x)*GAMMA(n+1)^3*hypergeom([n+1,n+1,n+1],[1,1,1],x); round(evalf(subs(x=1,%),64)) end; seq(A182925(i),i=0..11);
-
Mathematica
u = 1.`64; a[n_] := n!^3*HypergeometricPFQ[{n+u, n+u, n+u}, {u, u, u}, u]/E // Round; Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Nov 22 2012, after Maple *)
Formula
a(n) = exp(-1)*Gamma(n+1)^3*[3F3]([n+1, n+1, n+1], [1, 1, 1] | 1); here [3F3] is the generalized hypergeometric function of type 3F3.
Let B_{n}(x) = Sum_{j>=0}(exp(j!/(j-n)!*x-1)/j!) then a(n) = 4! [x^4] taylor(B_{n}(x)), where [x^4] denotes the coefficient of x^4 in the Taylor series for B_{n}(x).
Comments