This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182927 #13 May 21 2019 05:53:36 %S A182927 1,0,3,-8,25,-99,721,-5704,40881,-340325,3628801,-41245511,479001601, %T A182927 -6129725315,87212177053,-1317906346184,20922789888001, %U A182927 -354320889234597,6402373705728001,-121882630320799633,2432928081076384321,-51041048673495232715 %N A182927 Row sums of A182928. %C A182927 The number of partitions of an n-set with distinct block sizes can %C A182927 be computed recursively as A007837(0) = 1 and A007837(n) = - Sum_{1<=k<=n} binomial(n-1,k-1) * A182927(k) * A007837(n-k). %C A182927 Möbius inversion yields: 1, -1, 2, -8, 24, -101, 720, -5696, 40878,... %C A182927 A182927(2*i+1) = A182926(2*i+1) %F A182927 a(n) = Sum_{d|n} -n!/(d*(-(n/d)!)^d). %F A182927 E.g.f.: Sum_{k>=1} log(1 + x^k/k!). - _Ilya Gutkovskiy_, May 21 2019 %e A182927 a(6) = 1 - 10 + 30 - 120 = -99. %p A182927 A182927 := proc(n) local d; %p A182927 add(-n! / (d*(-(n/d)!)^d), d = numtheory[divisors](n)) end: %p A182927 seq(A182927(i), i = 1..22); %t A182927 a[n_] := Sum[ -n!/(d*(-(n/d)!)^d), {d, Divisors[n]}]; Table[a[n], {n, 1, 22}] // Flatten (* _Jean-François Alcover_, Jul 29 2013 *) %Y A182927 Cf. A182926, A182928, A005651, A007837. %K A182927 sign %O A182927 1,3 %A A182927 _Peter Luschny_, Apr 16 2011