cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182935 Numerators of an asymptotic series for the factorial function (Stirling's formula with half-shift).

This page as a plain text file.
%I A182935 #13 Oct 09 2023 04:40:36
%S A182935 1,-1,1,1003,-4027,-5128423,168359651,68168266699,-587283555451,
%T A182935 -221322134443186643,3253248645450176257,52946591945344238676937,
%U A182935 -3276995262387193162157789,-6120218676760621380031990351
%N A182935 Numerators of an asymptotic series for the factorial function (Stirling's formula with half-shift).
%C A182935 G_n = A182935(n)/A144618(n). These rational numbers provide the coefficients for an asymptotic expansion of the factorial function.
%C A182935 The relationship between these coefficients and the Bernoulli numbers are due to De Moivre, 1730 (see Laurie).
%H A182935 Dirk Laurie, <a href="https://web.archive.org/web/20150911031428/http://dip.sun.ac.za/~laurie/papers/computing_gamma.pdf">Old and new ways of computing the gamma function</a>, page 14, 2005.
%H A182935 Peter Luschny, <a href="http://www.luschny.de/math/factorial/approx/SimpleCases.html">Approximation Formulas for the Factorial Function.</a>
%H A182935 W. Wang, <a href="http://dx.doi.org/10.1016/j.jnt.2015.12.016">Unified approaches to the approximations of the gamma function</a>, J. Number Theory (2016).
%F A182935 z! ~ sqrt(2 Pi) (z+1/2)^(z+1/2) e^(-z-1/2)  Sum_{n>=0} G_n / (z+1/2)^n.
%e A182935 G_0 = 1, G_1 = -1/24, G_2 = 1/1152, G_3 = 1003/414720.
%p A182935 G := proc(n) option remember; local j,R;
%p A182935 R := seq(2*j,j=1..iquo(n+1,2));
%p A182935 `if`(n=0,1,add(bernoulli(j,1/2)*G(n-j+1)/(n*j),j=R)) end:
%p A182935 A182935 := n -> numer(G(n)); seq(A182935(i),i=0..15);
%t A182935 a[0] = 1; a[n_] := a[n] = Sum[ BernoulliB[j, 1/2]*a[n-j+1]/(n*j), {j, 2, n+1, 2}]; Table[a[n] // Numerator, {n, 0, 15}] (* _Jean-François Alcover_, Jul 26 2013, after Maple *)
%Y A182935 Cf. A001163, A001164, A144618.
%K A182935 sign,frac
%O A182935 0,4
%A A182935 Peter Luschny, Feb 24 2011