cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182955 G.f. satisfies: A(x) = 1 + x*A(x) * A( x*A(x) )^5.

This page as a plain text file.
%I A182955 #6 Mar 30 2012 18:37:23
%S A182955 1,1,6,56,651,8671,126997,1997798,33260799,580270730,10534337521,
%T A182955 197986746949,3837397114948,76473239154148,1563252546786254,
%U A182955 32716989219013821,699959257347957763,15288884723649589585
%N A182955 G.f. satisfies: A(x) = 1 + x*A(x) * A( x*A(x) )^5.
%F A182955 G.f. A(x) satisfies:
%F A182955 * A(x) = exp( Sum_{m>=0} {d^m/dx^m x^m*A(x)^(5m+5)} * x^(m+1)/(m+1)! );
%F A182955 * A(x) = exp( Sum_{m>=1} [Sum_{k>=0} C(m+k-1,k)*{[y^k] A(y)^(5m)}*x^k]*x^m/m);
%F A182955 which are equivalent.
%F A182955 Recurrence:
%F A182955 Let A(x)^m = Sum_{n>=0} a(n,m)*x^n with a(0,m)=1, then
%F A182955 a(n,m) = Sum_{k=0..n} m*C(n+m,k)/(n+m) * a(n-k,5k).
%e A182955 G.f.: A(x) = 1 + x + 6*x^2 + 56*x^3 + 651*x^4 + 8671*x^5 +...
%e A182955 Related expansions:
%e A182955 A(x*A(x)) = 1 + x + 7*x^2 + 74*x^3 + 953*x^4 + 13846*x^5 +...
%e A182955 A(x*A(x))^5 = 1 + 5*x + 45*x^2 + 520*x^3 + 6950*x^4 + 102481*x^5 +...
%e A182955 The g.f. satisfies:
%e A182955 log(A(x)) = A(x)^5*x + {d/dx x*A(x)^10}*x^2/2! + {d^2/dx^2 x^2*A(x)^15}*x^3/3! + {d^3/dx^3 x^3*A(x)^20}*x^4/4! +...
%o A182955 (PARI) {a(n)=local(A=1+sum(i=1,n-1,a(i)*x^i+x*O(x^n)));
%o A182955 for(i=1,n,A=exp(sum(m=1,n,sum(k=0,n-m,binomial(m+k-1,k)*polcoeff(A^(5*m),k)*x^k)*x^m/m)+x*O(x^n)));polcoeff(A,n)}
%o A182955 (PARI) {a(n, m=1)=if(n==0, 1, if(m==0, 0^n, sum(k=0, n, m*binomial(n+m, k)/(n+m)*a(n-k, 5*k))))}
%Y A182955 Cf. A030266, A121687, A182953, A182954.
%K A182955 nonn
%O A182955 0,3
%A A182955 _Paul D. Hanna_, Dec 15 2010