cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182977 Total number of parts that are neither the smallest part nor the largest part in all partitions of n.

This page as a plain text file.
%I A182977 #37 Dec 13 2023 20:29:11
%S A182977 0,0,0,0,0,0,1,2,6,12,22,39,66,103,159,243,352,510,721,1011,1391,1903,
%T A182977 2557,3436,4549,5999,7824,10187,13132,16886,21544,27414,34657,43703,
%U A182977 54797,68558,85328,105963,131028,161664,198710
%N A182977 Total number of parts that are neither the smallest part nor the largest part in all partitions of n.
%H A182977 Alois P. Heinz, <a href="/A182977/b182977.txt">Table of n, a(n) for n = 0..1000</a>
%F A182977 a(n) = A006128(n) - A182978(n).
%F A182977 G.f.: g(x) = Sum_{i>=1} Sum_{j>=i+1} (Sum_{k=i+1..j-1} x^{i+j+k}/(1-x^k)/Product_{k=i..j}(1-x^k)). - _Emeric Deutsch_, Dec 25 2015
%F A182977 a(n) = Sum_{k>=0} k*A265249(n,k). - _Emeric Deutsch_, Dec 25 2015
%e A182977 For n = 6 the partitions of 6 are
%e A182977 6
%e A182977 5 + 1
%e A182977 4 + 2
%e A182977 4 + 1 + 1
%e A182977 3 + 3
%e A182977 3 + (2) + 1 .......... the "2" is the part that counts.
%e A182977 3 + 1 + 1 + 1
%e A182977 2 + 2 + 2
%e A182977 2 + 2 + 1 + 1
%e A182977 2 + 1 + 1 + 1 + 1
%e A182977 1 + 1 + 1 + 1 + 1 + 1
%e A182977 There is only one part which is neither the smallest part nor the largest part in all partitions of 6, so a(6) = 1.
%p A182977 g := add(add((add(x^(i+j+k)/(1-x^k), k = i+1 .. j-1))/(mul(1-x^k, k = i .. j)), j = i+1 .. 80), i = 1 .. 80): gser := series(g, x = 0, 50): seq(coeff(gser, x, n), n = 0 .. 45); # _Emeric Deutsch_, Dec 25 2015
%Y A182977 Cf. A006128, A046746, A092269, A116686, A182978, A182984, A265249.
%K A182977 nonn
%O A182977 0,8
%A A182977 _Omar E. Pol_, Jul 17 2011
%E A182977 a(12) corrected and more terms a(13)-a(40) from _David Scambler_, Jul 18 2011